A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling

18.02.14 KB. Ok to add accepted version to spiral, Elsevier says ok while mandate not enforced.

[1]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[2]  Dale B. Haidvogel,et al.  To continue or discontinue: Comparisons of continuous and discontinuous Galerkin formulations in a spectral element ocean model , 2006 .

[3]  C. C. Pain,et al.  LBB Stability of a Mixed Discontinuous/Continuous Galerkin Finite Element Pair , 2007 .

[4]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[5]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[6]  Francis X. Giraldo,et al.  High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere , 2006, J. Comput. Phys..

[7]  Andrew Staniforth,et al.  Finite Elements for Shallow-Water Equation Ocean Models , 1998 .

[8]  Roy A. Walters,et al.  A robust, finite element model for hydrostatic surface water flows , 1998 .

[9]  Mark Ainsworth,et al.  Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation , 2006, J. Sci. Comput..

[10]  Jean-François Remacle,et al.  High-order h-adaptive discontinuous Galerkin methods for ocean modelling , 2007 .

[11]  Vijaya R. Ambati,et al.  Space-time discontinuous Galerkin discretization of rotating shallow water equations on moving grids , 2006 .

[12]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[13]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[14]  Colin J. Cotter,et al.  LBB stability of a mixed Galerkin finite element pair for fluid flow simulations , 2009, J. Comput. Phys..