Evidence for Exciton Crystals in a 2D Semiconductor Heterotrilayer

Two-dimensional (2D) transition metal dichalcogenides (TMDC) and their moiré interfaces have been demonstrated for correlated electron states, including Mott insulators and electron/hole crystals commensurate with moiré superlattices 1–7 . Here we present spectroscopic evidences for ordered bosons interlayer exciton crystals in a WSe 2 /MoSe 2 /WSe 2 trilayer, where the enhanced Coulomb interactions over those in heterobilayers have been predicted to result in exciton ordering 8–10 . While the dipolar interlayer excitons in the heterobilayer may be ordered by the periodic moiré traps 11–14 , their mutual repulsion results in de-trapping at exciton density n ex ≥ 10 11 cm -2 to form mobile exciton gases and further to electron-hole plasmas, both accompanied by broadening in photoluminescence (PL) peaks and large increases in mobility 15 . In contrast, ordered interlayer excitons in the trilayer are characterized by negligible mobility and by sharper PL peaks persisting to n ex ≥ 10 12 cm -2 . We find that an optically dark state attributed to the predicted quadrupolar exciton crystal transitions to the bright dipolar excitons either with increasing n ex or by an applied electric field. These ordered interlayer excitons may serve as models for the exploration of quantum phase transitions and quantum coherent phenomena. Fermions and bosons can undergo quantum phase transitions and form ordered ground states. These processes are determined by changes to fundamental parameters in the system thermal phase TMDC

[1]  Kenji Watanabe,et al.  Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2 , 2021, Nature Physics.

[2]  Kenji Watanabe,et al.  Free Trions with Near-Unity Quantum Yield in Monolayer MoSe2. , 2021, ACS nano.

[3]  J. Shan,et al.  Dipolar excitonic insulator in a moiré lattice , 2021, Nature Physics.

[4]  L. Pfeiffer,et al.  Mott insulator of strongly interacting two-dimensional semiconductor excitons , 2021, Nature Physics.

[5]  I. L. Kurbakov,et al.  Quantum phase transition of a two-dimensional quadrupolar system , 2020, 2012.14008.

[6]  A. Georges,et al.  Moiré heterostructures as a condensed-matter quantum simulator , 2020, Nature Physics.

[7]  Kenji Watanabe,et al.  Signatures of Wigner crystal of electrons in a monolayer semiconductor , 2020, Nature.

[8]  M. Lukin,et al.  Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure , 2020, Nature.

[9]  J. Hone,et al.  Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe_{2}/WSe_{2} Heterobilayers. , 2020, Physical review letters.

[10]  Kenji Watanabe,et al.  Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack , 2020, Physical Review Research.

[11]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[12]  B. Gerardot,et al.  Highly energy-tunable quantum light from moiré-trapped excitons , 2020, Science Advances.

[13]  L. Orozco,et al.  Many-Body Signatures of Collective Decay in Atomic Chains. , 2020, Physical review letters.

[14]  Xiaodong Xu,et al.  Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions , 2020, Nature Materials.

[15]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[16]  R. Rapaport,et al.  Quantum Phase Transitions of Trilayer Excitons in Atomically Thin Heterostructures. , 2020, Physical review letters.

[17]  T. Taniguchi,et al.  Strongly correlated electrons and hybrid excitons in a moiré heterostructure , 2020, Nature.

[18]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[19]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[20]  Luka M. Devenica,et al.  Dipolar interactions between localized interlayer excitons in van der Waals heterostructures , 2019, Nature Materials.

[21]  J. Shan,et al.  Evidence of high-temperature exciton condensation in two-dimensional atomic double layers , 2019, Nature.

[22]  Xiaodong Xu,et al.  Optical generation of high carrier densities in 2D semiconductor heterobilayers , 2019, Science Advances.

[23]  L. Balicas,et al.  Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. , 2019, Nano letters.

[24]  Juwon Lee,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[25]  B. Shklovskii,et al.  Attraction of indirect excitons in van der Waals heterostructures with three semiconducting layers , 2019, Physical Review B.

[26]  M. Lukin,et al.  Electrical control of interlayer exciton dynamics in atomically thin heterostructures , 2018, Science.

[27]  Xiaodong Xu,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[28]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[29]  E. Tutuc,et al.  Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands. , 2018, Physical review letters.

[30]  G. Rainò,et al.  Superfluorescence from lead halide perovskite quantum dot superlattices , 2018, Nature.

[31]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[32]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[33]  Jiaqiang Yan,et al.  Directional interlayer spin-valley transfer in two-dimensional heterostructures , 2016, Nature Communications.

[34]  Xiaodong Xu,et al.  Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.

[35]  S. Larentis,et al.  Band Alignment in WSe2-Graphene Heterostructures. , 2015, ACS nano.

[36]  C. A. Nelson,et al.  Time-, Energy-, and Phase-Resolved Second-Harmonic Generation at Semiconductor Interfaces , 2014 .

[37]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[38]  M. Bonitz,et al.  Crystallization of an exciton superfluid , 2011, 1101.1757.

[39]  S. Girvin,et al.  Continuous quantum phase transitions , 1996, cond-mat/9609279.

[40]  J. Hubbard On the Interaction of Electrons in Metals , 1955 .