Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique.

La modelisation des problemes de contact pose de serieuses difficultes : conceptuelles, mathematiques et informatiques bien plus complexes que celles qui proviennent de la mecanique des structures lineaire classique. Motives par le role fondamental que joue le contact dans les applications en calcul de structures, nous nous interessons aux problemes de contact unilateral et frottement (statique et dynamique) en petites deformations. Cette these est consacree a l'etude de certaines formulations et methodes pour resoudre ce probleme et se decompose en deux grandes parties. La premiere partie est consacree a la presentation de la discretisation hybride du probleme de contact unilateral avec frottement de Coulomb. Une formulation avec projection est etudiee et un resultat d'existence et d'unicite est donne pour le probleme discret. Differentes methodes de resolution sont presentees (Newton, methode iterative, points fixes, Uzawa) et comparees en termes de nombre d'iterations et en termes de robustesse par rapport au coefficient de frottement. La deuxieme partie concerne le probleme de contact elastodynamique. Plusieurs schemas classiques d'integration en temps (la θ-methode, schema de Newmark, point milieu) sont presentes dans cette partie. On donne aussi de nouvelles strategies (schema de Paoli et Schatzman, schema avec la loi de contact equivalente, schema avec la matrice de masse equivalente) pour venir a bout des difficultes rencontrees avec les schemas precedents. Cette derniere methode nous permet de conserver l'energie du probleme et de montrer un resultat d'existence d'une solution lipschitzienne pour le probleme de contact elastodynamique discret. Ces resultats sont valides par des simulations numeriques. The modelling of problems of contact leads to serious difficulties: conceptual, mathematical and data processing difficulties much more complex than those coming from the linear structural mechanics. Motivated by the fundamental role that the contact plays in applications of computational mechanics, we are interested in problems of unilateral contact and friction (static and dynamic) in small deformations. This thesis is devoted to the study of certain formulations and methods to solve this problem and breaks up into two great parts. The first one is devoted to the presentation of the hybrid discretization of unilateral contact problem with Coulomb friction. A formulation with a projection is developed and an existence and uniqueness result is given for the discrete problem. Different methods of solution are presented (Newton, iterative method, fixed points, Uzawa) and are compared in terms of number of iteration and robustness with respect to the coefficient of friction. The second part relates to the elastodynamic contact problem. Several algorithms (θ-method, Newmark, midpoint) are presented. New strategies are considered (Paoli and Schatzman scheme, scheme with an equivalent contact condition, scheme with equivalent mass matrix) to overcome the difficulties met with the previous schemes. The last method allows us to have energy conserving problem and to prove an existence result of a Lipschitz continuous solution for the discrete elastodynamic contact problem. These results are validated by numerical results.

[1]  P. D. Panagiotopoulos,et al.  Coercive and semicoercive hemivariational inequalities , 1991 .

[2]  Yves Renard A Uniqueness Criterion for the Signorini Problem with Coulomb Friction , 2006, SIAM J. Math. Anal..

[3]  N. Strömberg An augmented Lagrangian method for fretting problems , 1997 .

[4]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[5]  G. De Saxce,et al.  Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives , 1992 .

[6]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[7]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[8]  L. Paoli,et al.  Approximation et existence en vibro-impact , 1999 .

[9]  Jaroslav Haslinger,et al.  Approximation of the signorini problem with friction, obeying the coulomb law , 1983 .

[10]  M. Barboteu,et al.  An energy-conserving algorithm for nonlinear elastodynamic contact problems – Extension to a frictional dissipation phenomenon , 2006 .

[11]  Laetitia Paoli,et al.  Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .

[12]  J. U. Kim,et al.  A boundary thin obstacle problem for a wave equation , 1989 .

[13]  Michelle Schatzman,et al.  A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .

[14]  F. B. Belgacema,et al.  A mixed formulation for the Signorini problem in nearly incompressible elasticity ✩ , 2005 .

[15]  P. Panagiotopoulos,et al.  Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications , 1999 .

[16]  A. Klarbring,et al.  FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE , 1988 .

[17]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[18]  Yves Renard,et al.  Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers , 2006 .

[19]  Laetitia Paoli,et al.  Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  F. Lebon,et al.  Contact problems with friction: models and simulations , 2003, Simul. Model. Pract. Theory.

[21]  Ivo Babuška,et al.  The Babuška-Brezzi condition and the patch test: an example , 1997 .

[22]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[23]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  P. W. Christensen,et al.  Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .

[26]  Yves Renard,et al.  Surface perturbation of an elastodynamic contact problem with friction , 2003, European Journal of Applied Mathematics.

[27]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[28]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[30]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[31]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[32]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[33]  J. Moreau Une formulation du contact à frottement sec; application au calcul numérique , 1986 .

[34]  Patrick Laborde,et al.  Comparison of two approaches for the discretization of elastodynamic contact problems , 2006 .

[35]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .