Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique.
暂无分享,去创建一个
[1] P. D. Panagiotopoulos,et al. Coercive and semicoercive hemivariational inequalities , 1991 .
[2] Yves Renard. A Uniqueness Criterion for the Signorini Problem with Coulomb Friction , 2006, SIAM J. Math. Anal..
[3] N. Strömberg. An augmented Lagrangian method for fretting problems , 1997 .
[4] J. Moreau,et al. Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .
[5] G. De Saxce,et al. Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives , 1992 .
[6] P. Alart,et al. A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .
[7] Oscar Gonzalez,et al. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .
[8] L. Paoli,et al. Approximation et existence en vibro-impact , 1999 .
[9] Jaroslav Haslinger,et al. Approximation of the signorini problem with friction, obeying the coulomb law , 1983 .
[10] M. Barboteu,et al. An energy-conserving algorithm for nonlinear elastodynamic contact problems – Extension to a frictional dissipation phenomenon , 2006 .
[11] Laetitia Paoli,et al. Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .
[12] J. U. Kim,et al. A boundary thin obstacle problem for a wave equation , 1989 .
[13] Michelle Schatzman,et al. A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .
[14] F. B. Belgacema,et al. A mixed formulation for the Signorini problem in nearly incompressible elasticity ✩ , 2005 .
[15] P. Panagiotopoulos,et al. Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications , 1999 .
[16] A. Klarbring,et al. FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE , 1988 .
[17] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[18] Yves Renard,et al. Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers , 2006 .
[19] Laetitia Paoli,et al. Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[20] F. Lebon,et al. Contact problems with friction: models and simulations , 2003, Simul. Model. Pract. Theory.
[21] Ivo Babuška,et al. The Babuška-Brezzi condition and the patch test: an example , 1997 .
[22] J. Lions,et al. Les inéquations en mécanique et en physique , 1973 .
[23] Patrick Hild,et al. Quadratic finite element methods for unilateral contact problems , 2002 .
[24] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[25] P. W. Christensen,et al. Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .
[26] Yves Renard,et al. Surface perturbation of an elastodynamic contact problem with friction , 2003, European Journal of Applied Mathematics.
[27] T. Laursen,et al. Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.
[28] V. Girault,et al. A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .
[30] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[31] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[32] J. Moreau. Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .
[33] J. Moreau. Une formulation du contact à frottement sec; application au calcul numérique , 1986 .
[34] Patrick Laborde,et al. Comparison of two approaches for the discretization of elastodynamic contact problems , 2006 .
[35] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .