The stochastic Weibull diffusion process: Computational aspects and simulation

Abstract This paper presents a new stochastic diffusion process, in which the mean function is proportional to the density function of the Weibull distribution. This is considered a useful model for survival populations, reliability studies and life-testing experiments. The main features of the process are analysed, including the transition probability density function and conditional and non-conditional mean functions. The parameters of the process are estimated by maximum likelihood using discrete sampling. Newton-Raphson and simulated annealing numerical methods are proposed to solve the likelihood equations, and are compared using a simulation example.

[1]  Horst Rinne,et al.  The Weibull Distribution: A Handbook , 2008 .

[2]  R. Capocelli,et al.  A diffusion model for population growth in random environment. , 1974, Theoretical population biology.

[3]  D. N. P. Murthy,et al.  Weibull-Related Distributions for the Modelling of Bathtub Shaped Failure Rate Functions , 2003 .

[4]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[5]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[6]  Ahmed Nafidi,et al.  Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model , 2005 .

[7]  Larry H. Crow,et al.  Reliability Analysis for Complex, Repairable Systems , 1975 .

[8]  S. Bompadre,et al.  A Stochastic Formulation of the Gompertzian Growth Model for in vitro Bactericidal Kinetics: Parameter Estimation and Extinction Probability , 2005, Biometrical journal. Biometrische Zeitschrift.

[9]  Lee J. Bain Statistical analysis of reliability and life-testing models : theory and methods , 1992 .

[10]  Patricia Román-Román,et al.  Estimating the parameters of a Gompertz-type diffusion process by means of Simulated Annealing , 2012, Appl. Math. Comput..

[11]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[12]  Ramón Gutiérrez-Sánchez,et al.  Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors , 2016 .

[13]  Ramón Gutiérrez-Sánchez,et al.  The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process , 2009 .

[14]  Patricia Román-Román,et al.  Modelling logistic growth by a new diffusion process: Application to biological systems , 2012, Biosyst..

[15]  Patricia Román-Román,et al.  A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search , 2015, Appl. Math. Comput..

[16]  Christos H. Skiadas,et al.  Analytic solution and estimation of parameters on a stochastic exponential model for a technological diffusion process , 1995 .

[17]  Ahmed Nafidi,et al.  The Stochastic Rayleigh diffusion model: Statistical inference and computational aspects. Applications to modelling of real cases , 2006, Appl. Math. Comput..

[18]  Nigel Stallard,et al.  Modified Weibull multi-state models for the analysis of animal carcinogenicity data , 2004, Environmental and Ecological Statistics.

[19]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[20]  B. Øksendal Stochastic Differential Equations , 1985 .

[21]  Branko Ristic,et al.  Predicting population extinction from early observations of the Lotka-Volterra system , 2018, Appl. Math. Comput..

[22]  Virginia Giorno,et al.  On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model. , 2013, Mathematical biosciences.

[23]  Mingzhen Xu,et al.  Proportional difference estimate method of determining the characteristic parameters of monomodal and multimodal Weibull distributions of time-dependent dielectric breakdown , 2000 .

[24]  C. Lewis Industrial and business forecasting methods : a practical guide to exponential smoothing and curve fitting , 1982 .

[25]  K. Lomax Business Failures: Another Example of the Analysis of Failure Data , 1954 .

[26]  V. Giorno,et al.  A stochastic model in tumor growth. , 2006, Journal of theoretical biology.

[27]  V. Pagonis,et al.  Fit of first order thermoluminescence glow peaks using the Weibull distribution function. , 2001, Radiation protection dosimetry.

[28]  J. O. Rawlings,et al.  The Weibull Function as a Dose‐Response Model to Describe Ozone Effects on Crop Yields 1 , 1985 .

[29]  Stephen S. Wilson,et al.  Random iterative models , 1996 .

[30]  Arthur J. Hallinan A Review of the Weibull Distribution , 1993 .

[31]  Steven E. Rigdon,et al.  The Power Law Process: A Model for the Reliability of Repairable Systems , 1989 .

[32]  J. C. Lam,et al.  A study of Weibull parameters using long-term wind observations , 2000 .

[33]  Efthymios G. Tsionas,et al.  Posterior analysis, prediction and reliability in three-parameter weibull distributions , 2000 .

[34]  Luigi M. Ricciardi On the transformation of diffusion processes into the Wiener process , 1976 .

[35]  Williams Js,et al.  Efficient analysis of Weibull survival data from experiments on heterogeneous patient populations. , 1978 .

[36]  Jose D. Salas,et al.  Regional flood frequency analysis based on a Weibull model: Part 2. Simulations and applications , 2001 .

[37]  Jia Zhixin,et al.  Probability distribution of machining center failures , 1995 .

[38]  Christos H. Skiadas,et al.  A Stochastic Logistic Innovation Diffusion Model Studying the Electricity Consumption in Greece and the United States , 1999 .