1.03 – Boron and Silicon Carbide Fibers (CVD)

[1]  J. DiCarlo,et al.  Creep and rupture of an advanced CVD SiC fiber , 1997 .

[2]  R. E. Tressler,et al.  Comparison of Bend Stress Relaxation and Tensile Creep of CVD SiC Fibers , 1995 .

[3]  Zhengxiao Guo,et al.  Chemistry Effects On Interface Microstructure And Reaction In Titanium-Based Composites , 1994 .

[4]  M. Pindera,et al.  Transverse Strength of SCS-6 Silicon Carbide Fibers , 1993 .

[5]  M. Barsoum,et al.  Thermal Expansion of Silicon Carbide Monofilaments and Silicon Carbide–Borosilicate Composites , 1992 .

[6]  P. Pirouz,et al.  The microstructure of SCS-6 SiC fiber , 1991 .

[7]  R. Bhatt,et al.  Microstructural and strength stability of CVD SiC fibers in argon environments , 1991 .

[8]  D. B. Gundel,et al.  Interfacial reaction kinetics of coated SiC fibers with various titanium alloys , 1991 .

[9]  P. Pirouz,et al.  Effect of high temperature annealing on the microstructure of SCS-6 SiC fibers , 1991 .

[10]  A. Ritter,et al.  Reaction Zone Growth in Ti-Base/SiC Composites , 1990 .

[11]  M. Brun,et al.  Thermomechanical Properties of Chemically Vapor Deposited Silicon Carbide Filaments , 1989 .

[12]  F. E. Wawner,et al.  The origin of the “crack tip” mode of failure in boron filaments , 1989 .

[13]  F. Wawner,et al.  Interfacial void formation in born filaments , 1986 .

[14]  P. Brindley SiC Reinforced Aluminide Composites , 1986 .

[15]  J. DiCarlo Creep of chemically vapour deposited SiC fibres , 1986 .

[16]  S. Nutt,et al.  Silicon carbide filaments: Microstructure , 1985 .

[17]  F. Wawner,et al.  Kinetics of the reaction between SiC (SCS-6) filaments and Ti (6 Al-4 V) matrix , 1985 .

[18]  R. Pailler,et al.  SiC filament/titanium matrix composites regarded as model composites , 1984 .

[19]  A. Krawitz,et al.  The structure of boron in boron fibres , 1983 .

[20]  Y. Murakami,et al.  Theoretical prediction of tensile strength of fibers as a function of thickness of brittle zones on fiber surfaces , 1981 .

[21]  J. Carlsson The maximum deposition rate and the influence of hydrogen chloride on the deposition rate in the chemical vapour deposition of boron in a closed system , 1980 .

[22]  M. Shorshorov,et al.  Brittle interface layers and the tensile strength of metal matrix-fibre composites , 1979 .

[23]  J. Carlsson Techniques for the preparation of boron fibres , 1979 .

[24]  E. Pettenpaul,et al.  Preparation of Pure and Doped Silicon Carbide by Pyrolysis of Silane Compounds , 1978 .

[25]  O. Vingsbo,et al.  Radial cracks in boron fibres , 1977 .

[26]  V. Krukonis,et al.  Light Emission During the Fracture of Boron Filaments , 1976 .

[27]  F. Wawner,et al.  On the origin of triboluminescence in SiC filaments , 1976 .

[28]  D. Morin Boron carbide-coated boron filament as reinforcement in aluminium alloy matrices , 1976 .

[29]  J. DiCarlo Anelastic deformation of boron fibers , 1976 .

[30]  R. Ericksen Room temperature creep and failure of borsic filaments , 1974 .

[31]  G. Layden Fracture behaviour of boron filaments , 1973 .

[32]  F. Galasso,et al.  Preparation and properties of silicon carbide-coated boron filaments , 1968 .

[33]  F. Wawner,et al.  OBSERVATIONS ON THE TENSILE STRENGTH OF ``AMORPHOUS'' BORON , 1967 .

[34]  E. Ellison,et al.  Some mechanical properties of boron-tungsten boride filaments , 1967 .

[35]  F. Wawner,et al.  STRUCTURAL FEATURES OF AN ``AMORPHOUS'' BORON , 1966 .