Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity

The authors consider the Ginzburg–Landau model for superconductivity. First some well-known features of superconducting materials are reviewed and then various results concerning the model, the resultant differential equations, and their solution on bounded domains are derived. Then, finite element approximations of the solutions of the Ginzburg–Landau equations are considered and error estimates of optimal order are derived.

[1]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[2]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[3]  R. Temam Navier-Stokes Equations , 1977 .

[4]  F. Odeh,et al.  Existence and Bifurcation Theorems for the Ginzburg‐Landau Equations , 1967 .

[5]  J. Schrieffer Theory of superconductivity , 1958 .

[6]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[7]  Alexei Abrikosov,et al.  Magnetic properties of superconductors of the second group , 1956 .

[8]  W. Rheinboldt,et al.  On the Discretization Error of Parametrized Nonlinear Equations , 1983 .

[9]  Ernst Helmut Brandt,et al.  Ginsburg‐Landau Theory of the Vortex Lattice in Type‐I1 Superconductors for All Values of ϰ and B , 1972 .

[10]  Y. Y. Chen,et al.  Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon☆ , 1989 .

[11]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[12]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[13]  G. Lasher,et al.  SERIES SOLUTION OF THE GINZBURG-LANDAU EQUATIONS FOR THE ABRIKOSOV MIXED STATE , 1965 .

[14]  Erick J. Weinberg,et al.  Multivortex solutions of the Ginzburg-Landau equations , 1979 .

[15]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[16]  V. S. Klimov Nontrivial solutions of the Ginzburg-Landau equations , 1982 .

[17]  Rainer,et al.  Virial theorem for Ginzburg-Landau theories with potential applications to numerical studies of type-II superconductors. , 1989, Physical review. B, Condensed matter.

[18]  Lev P. Gor'kov,et al.  Microscopic derivation of the Ginzburg--Landau equations in the theory of superconductivity , 1959 .

[19]  J. Willebrand,et al.  Approximate calculation of the reversible magnetization curve of type II superconductors , 1970 .

[20]  Claudio Rebbi,et al.  Interaction energy of superconducting vortices , 1979 .

[21]  Alfred Brian Pippard,et al.  An experimental and theoretical study of the relation between magnetic field and current in a superconductor , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Yisong Yang,et al.  Boundary value problems of the Ginzburg–Landau equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  R. Carroll,et al.  On the Ginzburg-Landau equations , 1963 .

[24]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[25]  Gert Eilenberger,et al.  Zu Abrikosovs Theorie der periodischen Lösungen der GL-Gleichungen für Supraleiter 2. Art , 1964 .

[26]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[27]  Clifford Henry Taubes,et al.  On the equivalence of the first and second order equations for gauge theories , 1980 .

[28]  S. Autler,et al.  Bulk solution of Ginzburg-Landau equations for type II superconductors , 1964 .

[29]  Sam D. Howison,et al.  Macroscopic Models for Superconductivity , 1992, SIAM Rev..

[30]  H. London,et al.  The electromagnetic equations of the supraconductor , 1935 .

[31]  Rainer,et al.  Solving the Ginzburg-Landau equations by simulated annealing. , 1990, Physical review. B, Condensed matter.

[32]  W. Rheinboldt,et al.  Solution manifolds and submanifolds of parametrized equations and their discretization errors , 1984 .

[33]  Y. Y. Chen Nonsymmetric vortices for the Ginzberg–Landau equations on the bounded domain , 1989 .

[34]  L. Solymar An Introduction to the Theory of Superconductivity , 1968 .

[35]  Yisong Yang,et al.  Existence, regularity, and asymptotic behavior of the solutions to the Ginzburg-Landau equations on ℝ3 , 1989 .

[36]  P. Silverman,et al.  Type II superconductivity , 1969 .