Spatial Processing during Mental Imagery: A Neurofunctional Theory

Diverse methodologies, from animal research to neuroimaging, have begun to paint a coherent picture of the neural underpinnings of the human visual system. We outline a model that consists of seven coarsely defined processing subsystems. We begin with a discussion of the gating function of attention within a set of retinotopically mapped areas, which we call the visual buffer. This subsystem is implemented in the occipital lobe. Two major pathways lead forward, one going down to the inferior temporal lobe and the other up to the posterior parietal lobe. The functions of these systems are discussed, as are the roles of structures that integrate the two types of information and processes that use information to guide visual search. These same processes are used to generate visual mental images on the basis of stored information and to interpret patterns in images. We summarize a variety of types of evidence that support the putative role of each subsystem, as well as research investigating the anatomical localization of each subsystem.

[1]  S. Kosslyn,et al.  When is early visual cortex activated during visual mental imagery? , 2003, Psychological bulletin.

[2]  S. Kosslyn,et al.  The case for mental imagery , 2006 .

[3]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[4]  David R. Andresen,et al.  Interhemispheric communication of abstract and specific visual-form information , 2002, Neuropsychologia.

[5]  S. Kosslyn,et al.  The role of area 17 in visual imagery: convergent evidence from PET and rTMS. , 1999, Science.

[6]  S. Kosslyn,et al.  Two types of image generation: Evidence from PET , 2005, Cognitive, affective & behavioral neuroscience.

[7]  S. Kosslyn,et al.  Visual Mental Imagery Activates Topographically Organized Visual Cortex: PET Investigations , 1993, Journal of Cognitive Neuroscience.

[8]  Stephen M. Kosslyn,et al.  Image and mind , 1982 .

[9]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[10]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[11]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[12]  G. Poste,et al.  Building Population Genetics Resources Using the U.K. NHS , 1999, Science.

[13]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[14]  J. Mazziotta,et al.  Brain mapping : the systems , 2000 .

[15]  Giorgio Ganis,et al.  Visual imagery in cerebral visual dysfunction. , 2003, Neurologic clinics.

[16]  S. Kosslyn,et al.  Implicit transfer of motor strategies in mental rotation , 2003, Brain and Cognition.

[17]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[18]  Albrecht W. Inhoff,et al.  Isolating attentional systems: A cognitive-anatomical analysis , 1987, Psychobiology.

[19]  Richard J. Davidson,et al.  The asymmetrical brain , 2003 .

[20]  S. Petersen,et al.  Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. , 1985, Journal of neurophysiology.

[21]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[22]  Jennifer M. Shephard,et al.  Imagined rotations of self versus objects: an fMRI study , 2005, Neuropsychologia.

[23]  S. Kosslyn,et al.  Identifying objects at different levels of hierarchy: A positron emission tomography study , 1995 .

[24]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[25]  R. Shepard,et al.  Mental Rotation of Three-Dimensional Objects , 1971, Science.

[26]  E. Warrington,et al.  Two Categorical Stages of Object Recognition , 1978, Perception.

[27]  Stephen M Kosslyn,et al.  Sequential processes in image generation , 1988, Cognitive Psychology.

[28]  Y. Miyashita,et al.  Backward spreading of memory-retrieval signal in the primate temporal cortex. , 2001, Science.

[29]  S. Kosslyn,et al.  Neural foundations of imagery , 2001, Nature Reviews Neuroscience.

[30]  Guillaume Flandin,et al.  Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. , 2004, Brain research. Cognitive brain research.

[31]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[32]  M. Farah The neurological basis of mental imagery: A componential analysis , 1984, Cognition.

[33]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[34]  George Sperling,et al.  The information available in brief visual presentations. , 1960 .

[35]  S C Rao,et al.  Integration of what and where in the primate prefrontal cortex. , 1997, Science.

[36]  Stephen M. Kosslyn,et al.  Neural Systems Activated during Visual Mental Imagery: A Review and Meta-Analyses , 2000 .

[37]  Stephen M. Kosslyn,et al.  Brain rCBF and performance in visual imagery tasks: Common and distinct processes , 2004 .

[38]  S. Kosslyn,et al.  Brain areas underlying visual mental imagery and visual perception: an fMRI study. , 2004, Brain research. Cognitive brain research.

[39]  S. Kosslyn,et al.  Imagining rotation by endogenous versus exogenous forces: Distinct neural mechanisms , 2001, Neuroreport.

[40]  S. Kosslyn,et al.  Neural Systems Shared by Visual Imagery and Visual Perception: A Positron Emission Tomography Study , 1997, NeuroImage.

[41]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[42]  S. Pinker Mental imagery and the third dimension. , 1980, Journal of experimental psychology. General.