Polar codes with the unequal error protection property

Abstract The Internet of Things (IoT) is expected to support a wide variety of devices with different transmission reliability requirements. Channel codes with the unequal error protection (UEP) property are rather appealing for such applications. As the first provably capacity-achieving codes, polar codes have excellent error-correcting performances over a wide range of block lengths with low encoding and decoding complexities, which makes these codes well-suited for the energy-constrained IoT applications. Polar codes with unequal error protection are desirable. However, the UEP property of polar codes has not been explored explicitly in existing works. In this paper, a construction method for UEP polar codes is proposed based upon a novel selection rule of bit-channels. Refreezing and reselecting operations are employed to enable the UEP property for polar codes. The upper and lower bounds on the block error rate (BLER) of each data block are derived. Simulation results show that the proposed codes can provide a good performance of unequal error protection.

[1]  Jack K. Wolf,et al.  On linear unequal error protection codes , 1967, IEEE Trans. Inf. Theory.

[2]  Alexander Vardy,et al.  List Decoding of Polar Codes , 2015, IEEE Transactions on Information Theory.

[3]  Xuemin Shen,et al.  5G Mobile Communications , 2016 .

[4]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[5]  Ivana Maric,et al.  Capacity-achieving rate-compatible polar codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[6]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[7]  Saikat Guha,et al.  Polar Codes for Degradable Quantum Channels , 2011, IEEE Transactions on Information Theory.

[8]  Andrea Zanella,et al.  Internet of Things for Smart Cities , 2014, IEEE Internet of Things Journal.

[9]  Harm S. Cronie,et al.  Lossless source coding with polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Xiaohu You,et al.  Hardware Efficient and Low-Latency CA-SCL Decoder Based on Distributed Sorting , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[11]  Kai Chen,et al.  Capacity-achieving rateless polar codes , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).

[12]  Bin Li,et al.  An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check , 2012, IEEE Communications Letters.

[13]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[14]  Ying Li,et al.  Construction and Block Error Rate Analysis of Polar Codes Over AWGN Channel Based on Gaussian Approximation , 2014, IEEE Communications Letters.

[15]  Rajai Nasser,et al.  Polar Codes for Arbitrary Classical-Quantum Channels and Arbitrary cq-MACs , 2018, IEEE Transactions on Information Theory.

[16]  Nazanin Rahnavard,et al.  Unequal error protection using low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[18]  Dejan Vukobratovic,et al.  Expanding Window Fountain Codes for Unequal Error Protection , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[19]  Nazanin Rahnavard,et al.  Rateless Codes With Unequal Error Protection Property , 2007, IEEE Transactions on Information Theory.

[20]  Jinhong Yuan,et al.  A practical construction method for polar codes in AWGN channels , 2013, IEEE 2013 Tencon - Spring.

[21]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[22]  Alexander Barg,et al.  Achieving Secrecy Capacity of the Wiretap Channel and Broadcast Channel With a Confidential Component , 2017, IEEE Transactions on Information Theory.

[23]  Caijun Zhong,et al.  A Split-Reduced Successive Cancellation List Decoder for Polar Codes , 2015, IEEE Journal on Selected Areas in Communications.

[24]  Bin Gao,et al.  Structural Health Monitoring Framework Based on Internet of Things: A Survey , 2017, IEEE Internet of Things Journal.

[25]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[26]  Nazanin Rahnavard,et al.  Unequal Error Protection Using Partially Regular LDPC Codes , 2007, IEEE Transactions on Communications.

[27]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[28]  Toshiyuki Tanaka,et al.  Performance of polar codes with the construction using density evolution , 2009, IEEE Communications Letters.

[29]  Olgica Milenkovic,et al.  On unequal error protection LDPC codes based on Plotkin-type constructions , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[30]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.

[31]  Saikat Guha,et al.  Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.

[32]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[33]  Nazanin Rahnavard,et al.  Distributed rateless codes with UEP property , 2010, 2010 IEEE International Symposium on Information Theory.

[34]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[35]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[36]  Eren Sasoglu,et al.  Polar codes for the two-user binary-input multiple-access channel , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[37]  Giuseppe Caire,et al.  Turbo codes with unequal error protection , 1996 .

[38]  Shengli Zhang,et al.  Exploiting the UEP property of polar codes to reduce image distortions induced by transmission errors , 2015, 2015 IEEE/CIC International Conference on Communications in China (ICCC).