The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints

This is the first of a series of papers in which we derive simultaneous constraints on cosmological parameters and X-ray scaling relations using observations of the growth of massive, X-ray flux-selected galaxy clusters. Our data set consists of 238 cluster detections from the ROSAT All-Sky Survey, and incorporates follow-up observations of 94 of those clusters using the Chandra X-ray Observatory or ROSAT. Here we describe and implement a new statistical framework required to self-consistently produce simultaneous constraints on cosmology and scaling relations from such data, and present results on models of dark energy. In spatially flat models with a constant dark energy equation of state, w, the cluster data yield Ω m = 0.23 ± 0.04, σ 8 = 0.82 ± 0.05 and w = - 1.01 ± 0.20, incorporating standard priors on the Hubble parameter and mean baryon density of the Universe, and marginalizing over conservative allowances for systematic uncertainties. These constraints agree well and are competitive with independent data in the form of cosmic microwave background anisotropies, type Ia supernovae, cluster gas mass fractions, baryon acoustic oscillations, galaxy redshift surveys and cosmic shear. The combination of our data with current microwave background, supernova, gas mass fraction and baryon acoustic oscillation data yields Ω m , = 0.27 ± 0.02, σ 8 = 0.79 ± 0.03 and w = -0.96 ± 0.06 for flat, constant w models. The combined data also allow us to investigate evolving w models. Marginalizing over transition redshifts in the range 0.05-1, we constrain the equation of state at late and early times to be respectively w 0 = -0.88 ± 0.21 and w et = -1.05 +0.20 -0.36 , again including conservative systematic allowances. The combined data provide constraints equivalent to a Dark Energy Task Force figure of merit of 15.5. Our results highlight the power of X-ray studies, which enable the straightforward production of large, complete and pure cluster samples and admit tight scaling relations, to constrain cosmology. However, the new statistical framework we apply to this task is equally applicable to cluster studies at other wavelengths.

[1]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[2]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[3]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[4]  J. Frieman,et al.  COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.

[5]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[6]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[7]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[8]  H. Hoekstra,et al.  Evidence for non-hydrostatic gas from the cluster X-ray to lensing mass ratio , 2007, 0710.4132.

[9]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[10]  Alexey Vikhlinin,et al.  Cluster constraints on f (R) gravity , 2009, 0908.2457.

[11]  A. Evrard,et al.  The Effect of Gas Physics on the Halo Mass Function , 2008, 0809.2805.

[12]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[13]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[14]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[15]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters III: Testing General Relativity on Cosmological Scales , 2009, 0911.1787.

[16]  V. Boucher,et al.  Imprints of dark energy on cosmic structure formation – I. Realistic quintessence models and the non‐linear matter power spectrum , 2009, 0903.5490.

[17]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[18]  Katrin Heitmann,et al.  The Halo Mass Function: High-Redshift Evolution and Universality , 2007, astro-ph/0702360.

[19]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA , 2008, The Astrophysical Journal Supplement Series.

[20]  Andrew J. Connolly,et al.  Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.

[21]  The X-ray luminosity-mass relation for local clusters of galaxies , 2006, astro-ph/0602324.

[22]  A. Mazure,et al.  The XMM‐LSS survey: the Class 1 cluster sample over the initial 5 deg2 and its cosmological modelling★ , 2007, 0709.1950.

[23]  H. Hoekstra,et al.  THE X-RAY CLUSTER NORMALIZATION OF THE MATTER POWER SPECTRUM , 2008, 0809.3832.

[24]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[25]  J. Trümper ROSAT--A New Look at the X-ray Sky. , 1993, Science.

[26]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[27]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[28]  S. White,et al.  The redshift dependence of the structure of massive Λ cold dark matter haloes , 2007, 0711.0746.

[29]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[30]  23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7 , 2003, astro-ph/0310843.

[31]  S. E. Persson,et al.  Optical and Infrared Photometry of the Type Ia Supernovae 1991T, 1991bg, 1999ek, 2001bt, 2001cn, 2001cz, and 2002bo , 2004, astro-ph/0409036.

[32]  J. P. Huchra,et al.  The ROSAT Brightest Cluster Sample — I. The compilation of the sample and the cluster log N—log S distribution , 1998, astro-ph/9812394.

[33]  Steven W. Allen,et al.  Constraining dark energy with X‐ray galaxy clusters, supernovae and the cosmic microwave background , 2004, astro-ph/0409574.

[34]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[35]  Kipac,et al.  The observed growth of massive galaxy clusters – IV. Robust constraints on neutrino properties , 2009, 0911.1788.

[36]  BVRI Light Curves for 29 Type Ia Supernovae , 1996, astro-ph/9609064.

[37]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[38]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[39]  Eric V. Linder,et al.  Cosmic structure and dark energy , 2003 .

[40]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[41]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[42]  Yun Wang,et al.  Figure of merit for dark energy constraints from current observational data , 2008, 0803.4295.

[43]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[44]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[45]  S. E. Persson,et al.  Optical and Infrared Photometry of the Type Ia Supernovae 1999da, 1999dk, 1999gp, 2000bk, and 2000ce , 2001, astro-ph/0106088.

[46]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[47]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[48]  J. Bullock,et al.  Dark energy and dark matter haloes , 2005 .

[49]  Halo Properties in Models with Dynamical Dark Energy , 2003, astro-ph/0303304.

[50]  Christopher J. Miller,et al.  The XMM Cluster Survey: forecasting cosmological and cluster scaling-relation parameter constraints , 2008, 0802.4462.

[51]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[52]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[53]  X-Ray Temperatures for the Extended Medium-Sensitivity Survey High-Redshift Cluster Sample: Constraints on Cosmology and the Dark Energy Equation of State , 2004, astro-ph/0404142.

[54]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[55]  Risa H. Wechsler,et al.  ANNEALING A FOLLOW-UP PROGRAM: IMPROVEMENT OF THE DARK ENERGY FIGURE OF MERIT FOR OPTICAL GALAXY CLUSTER SURVEYS , 2009, 0907.2690.

[56]  C. Frenk,et al.  The halo mass function from the dark ages through the present day , 2006, astro-ph/0607150.

[57]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[58]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[59]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[60]  H. Noh,et al.  Roles of dark energy perturbations in dynamical dark energy models: can we ignore them? , 2009, Physical review letters.

[61]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[62]  L. Guzzo,et al.  The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy cluster survey. V. The cluster catalogue , 2004, astro-ph/0405546.

[63]  R. Rosenfeld,et al.  The signature of dark energy perturbations in galaxy cluster surveys , 2009, 0902.3226.

[64]  Adam G. Riess,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1998 .

[65]  N. B. Suntzeff,et al.  Supernova Limits on the Cosmic Equation of State , 1998, astro-ph/9806396.

[66]  L. Guzzo,et al.  The ROSAT-ESO Flux-limited X-Ray (REFLEX) Galaxy Cluster Survey. IV. The X-Ray Luminosity Function , 2002 .

[67]  Y. Jing,et al.  Mass and Redshift Dependence of Dark Halo Structure , 2003, astro-ph/0309375.

[68]  Wayne Hu,et al.  Sample Variance Considerations for Cluster Surveys , 2002 .

[69]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[70]  A. Edge,et al.  The X-ray brightest clusters of galaxies from the Massive Cluster Survey , 2010, 1004.4683.

[71]  Constraining Amplitude and Slope of the Mass Fluctuation Spectrum Using a Cluster Baryon Mass Function , 2003, astro-ph/0305549.

[72]  Cosmological constraints from the local X-ray luminosity function of the most X-ray-luminous galaxy clusters , 2002, astro-ph/0208394.

[73]  S. Allen,et al.  Constraints on modified gravity from the observed X-ray luminosity function of galaxy clusters , 2008, 0812.2259.

[74]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[75]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[76]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[77]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[78]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[79]  Martin White,et al.  Dark matter halo abundances, clustering and assembly histories at high redshift , 2007, 0706.0208.

[80]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[81]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[82]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[83]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .

[84]  Cluster mass functions in the quintessential universe , 2003, astro-ph/0309485.

[85]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[86]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[87]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[88]  L. Senatore,et al.  Spherical collapse in quintessence models with zero speed of sound , 2009, 0911.2701.

[89]  S. W. Allen,et al.  New constraints on dark energy from the observed growth of the most X-ray luminous galaxy clusters , 2007, 0709.4294.

[90]  S. E. Persson,et al.  Optical and Infrared Photometry of the Nearby Type Ia Supernovae 1999ee, 2000bh, 2000ca, and 2001ba , 2003, astro-ph/0311439.

[91]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[92]  Shirley Ho,et al.  Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.

[93]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters II: X-ray Scaling Relations , 2009, 0909.3099.

[94]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[95]  Y. Jing,et al.  ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS , 2008, 0811.0828.

[96]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[97]  The REFLEX galaxy cluster survey - VII. Omega(m) and sigma(8) from cluster abundance and large-scale clustering , 2002, astro-ph/0208251.

[98]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[99]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[100]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: BEAM MAPS AND WINDOW FUNCTIONS , 2008, 0803.0570.

[101]  Matthew Colless,et al.  The 2dF Galaxy Redshift Survey: Final data release , 2003, astro-ph/0306581.

[102]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[103]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.