Firefly Algorithm for Structural Search.
暂无分享,去创建一个
[1] Stefan Goedecker,et al. Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.
[2] Qiang Zhu,et al. New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..
[3] S. Shi,et al. Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .
[4] U. Landman,et al. Genetic Algorithms for Structural Cluster Optimization , 1998 .
[5] K. Lee,et al. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .
[6] Matthieu Verstraete,et al. First-principles computation of material properties: the ABINIT software project , 2002 .
[7] M. Hoare,et al. Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .
[8] Mark A. Miller,et al. Archetypal energy landscapes , 1998, Nature.
[9] H. Thurn,et al. Crystal Structure of Violet Phosphorus , 1966 .
[10] K. Ho,et al. Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .
[11] R. Hultgren,et al. The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus , 1935 .
[12] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[13] Seung M. Oh,et al. An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.
[14] Muratahan Aykol,et al. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .
[15] J. C. Jamieson. Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.
[16] Mario Valle,et al. How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.
[17] G. Seifert,et al. Adsorption of Phosphonic Acid at the TiO2 Anatase (101) and Rutile (110) Surfaces , 2009 .
[18] S. Gómez,et al. Archimedean polyhedron structure yields a lower energy atomic cluster , 1996 .
[19] The extended stability range of phosphorus allotropes. , 2014, Angewandte Chemie.
[20] J. Doye. Physical Perspectives on the Global Optimization of Atomic Clusters , 2000, cond-mat/0007338.
[21] Lennard-Jones Clusters and the Multiple-Minima Problem , 2000 .
[22] Frank J. J. Leusen,et al. Computer Simulation to Predict Possible Crystal Polymorphs , 2007 .
[23] S. Rundqvist,et al. Refinement of the crystal structure of black phosphorus , 1965 .
[24] T. Pakkanen,et al. Icosahedral and ring-shaped allotropes of arsenic. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.
[25] A. Oganov,et al. How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.
[26] Doye. Effect of compression on the global optimization of atomic clusters , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[27] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[28] M. Peruzzini,et al. Coordination chemistry and functionalization of white phosphorus via transition metal complexes. , 2005, Chemical Society reviews.
[29] G. Seifert,et al. Fibrous red phosphorus. , 2005, Angewandte Chemie.
[30] K. Burke,et al. Rationale for mixing exact exchange with density functional approximations , 1996 .
[31] R. Dinnebier,et al. The crystal structure of γ-P4, a low temperature modification of white phosphorus , 2005 .
[32] F. Xia,et al. The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.
[33] Li Zhu,et al. CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..
[34] Chris J Pickard,et al. Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[35] Fabio Schoen,et al. Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones Clusters , 2003, Comput. Optim. Appl..
[36] George Crabtree,et al. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science , 2010 .
[37] Haiming Xie,et al. Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .
[38] S. Goedecker. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.
[39] J. Doye,et al. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.
[40] Stefan Goedecker,et al. ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..
[41] F. Xia,et al. Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.
[42] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[43] David Romero,et al. The optimal geometry of Lennard-Jones clusters: 148-309 , 1999 .
[44] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[45] Xin-She Yang,et al. Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.
[46] Stefano Curtarolo,et al. Data-Mining-Driven Quantum Mechanics for the Prediction of Structure , 2006 .
[47] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[48] T. Kikegawa,et al. An X‐ray diffraction study of lattice compression and phase transition of crystalline phosphorus , 1983 .
[49] S. Goedecker,et al. Metrics for measuring distances in configuration spaces. , 2013, The Journal of chemical physics.
[50] T. Frauenheim,et al. DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.
[51] J. C. Schön,et al. Predicting solid compounds via global exploration of the energy landscape of solids on the ab initio level without recourse to experimental information , 2010 .
[52] Howard R. Mayne,et al. Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .
[53] J. Doye,et al. THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.
[54] G. Seifert,et al. Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces , 2008 .
[55] L. Wille. Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .
[56] A. Pfitzner. Phosphorus remains exciting! , 2006, Angewandte Chemie.
[57] H. Krebs,et al. Über Struktur und Eigenschaften der Halbmetalle. XXII. Die Kristallstruktur des Hittorfschen Phosphors , 1969 .
[58] S. Woodley,et al. Crystal structure prediction from first principles. , 2008, Nature materials.
[59] G. Ackland,et al. Origin of incommensurate modulations in the high-pressure phosphorus IV phase , 2008 .
[60] D. Shanno,et al. Optimal conditioning of quasi-Newton methods , 1970 .
[61] Jan Kroon,et al. Fast clustering of equivalent structures in crystal structure prediction , 1997, J. Comput. Chem..
[62] J. Doye,et al. Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters , 1999, cond-mat/9903305.
[63] Robert H. Leary,et al. Global Optima of Lennard-Jones Clusters , 1997, J. Glob. Optim..
[64] G. Natta,et al. The Crystal Structure of White Phosphorus. , 1930, Nature.
[65] David Romero,et al. A GENETIC ALGORITHM FOR LENNARD-JONES ATOMIC CLUSTERS , 1999 .
[66] Riccardo Poli,et al. Analysis of the publications on the applications of particle swarm optimisation , 2008 .
[67] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[68] Robert H. Leary,et al. Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..
[69] Xin-She Yang,et al. Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..
[70] H. Borrmann,et al. Crystal Structure of Ordered White Phosphorus(β-P) , 1987 .
[71] Chris J. Pickard,et al. Structures at high pressure from random searching , 2009 .
[72] D. Corbridge,et al. Structure of White Phosphorus: Single Crystal X-Ray Examination , 1952, Nature.
[73] Nikolaus Hansen,et al. USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..
[74] H. Borrmann,et al. On the Polymorphism of White Phosphorus , 1997 .
[75] Yanchao Wang,et al. Crystal structure prediction via particle-swarm optimization , 2010 .
[76] R. Ahuja. Calculated high pressure crystal structure transformations for phosphorus , 2003 .
[77] P. Luksch,et al. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.
[78] H. Scheraga,et al. Global optimization of clusters, crystals, and biomolecules. , 1999, Science.
[79] J. Northby. Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .