Firefly Algorithm for Structural Search.

The problem of computational structure prediction of materials is approached using the firefly (FF) algorithm. Starting from the chemical composition and optionally using prior knowledge of similar structures, the FF method is able to predict not only known stable structures but also a variety of novel competitive metastable structures. This article focuses on the strengths and limitations of the algorithm as a multimodal global searcher. The algorithm has been implemented in software package PyChemia ( https://github.com/MaterialsDiscovery/PyChemia ), an open source python library for materials analysis. We present applications of the method to van der Waals clusters and crystal structures. The FF method is shown to be competitive when compared to other population-based global searchers.

[1]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[2]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[3]  S. Shi,et al.  Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .

[4]  U. Landman,et al.  Genetic Algorithms for Structural Cluster Optimization , 1998 .

[5]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[6]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[7]  M. Hoare,et al.  Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .

[8]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[9]  H. Thurn,et al.  Crystal Structure of Violet Phosphorus , 1966 .

[10]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[11]  R. Hultgren,et al.  The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus , 1935 .

[12]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[13]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[14]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[15]  J. C. Jamieson Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.

[16]  Mario Valle,et al.  How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.

[17]  G. Seifert,et al.  Adsorption of Phosphonic Acid at the TiO2 Anatase (101) and Rutile (110) Surfaces , 2009 .

[18]  S. Gómez,et al.  Archimedean polyhedron structure yields a lower energy atomic cluster , 1996 .

[19]  The extended stability range of phosphorus allotropes. , 2014, Angewandte Chemie.

[20]  J. Doye Physical Perspectives on the Global Optimization of Atomic Clusters , 2000, cond-mat/0007338.

[21]  Lennard-Jones Clusters and the Multiple-Minima Problem , 2000 .

[22]  Frank J. J. Leusen,et al.  Computer Simulation to Predict Possible Crystal Polymorphs , 2007 .

[23]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[24]  T. Pakkanen,et al.  Icosahedral and ring-shaped allotropes of arsenic. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[26]  Doye Effect of compression on the global optimization of atomic clusters , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[28]  M. Peruzzini,et al.  Coordination chemistry and functionalization of white phosphorus via transition metal complexes. , 2005, Chemical Society reviews.

[29]  G. Seifert,et al.  Fibrous red phosphorus. , 2005, Angewandte Chemie.

[30]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[31]  R. Dinnebier,et al.  The crystal structure of γ-P4, a low temperature modification of white phosphorus , 2005 .

[32]  F. Xia,et al.  The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.

[33]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[34]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Fabio Schoen,et al.  Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones Clusters , 2003, Comput. Optim. Appl..

[36]  George Crabtree,et al.  Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science , 2010 .

[37]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[38]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[39]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[40]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[41]  F. Xia,et al.  Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.

[42]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[43]  David Romero,et al.  The optimal geometry of Lennard-Jones clusters: 148-309 , 1999 .

[44]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[45]  Xin-She Yang,et al.  Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.

[46]  Stefano Curtarolo,et al.  Data-Mining-Driven Quantum Mechanics for the Prediction of Structure , 2006 .

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  T. Kikegawa,et al.  An X‐ray diffraction study of lattice compression and phase transition of crystalline phosphorus , 1983 .

[49]  S. Goedecker,et al.  Metrics for measuring distances in configuration spaces. , 2013, The Journal of chemical physics.

[50]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[51]  J. C. Schön,et al.  Predicting solid compounds via global exploration of the energy landscape of solids on the ab initio level without recourse to experimental information , 2010 .

[52]  Howard R. Mayne,et al.  Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates , 1996 .

[53]  J. Doye,et al.  THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.

[54]  G. Seifert,et al.  Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces , 2008 .

[55]  L. Wille Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .

[56]  A. Pfitzner Phosphorus remains exciting! , 2006, Angewandte Chemie.

[57]  H. Krebs,et al.  Über Struktur und Eigenschaften der Halbmetalle. XXII. Die Kristallstruktur des Hittorfschen Phosphors , 1969 .

[58]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[59]  G. Ackland,et al.  Origin of incommensurate modulations in the high-pressure phosphorus IV phase , 2008 .

[60]  D. Shanno,et al.  Optimal conditioning of quasi-Newton methods , 1970 .

[61]  Jan Kroon,et al.  Fast clustering of equivalent structures in crystal structure prediction , 1997, J. Comput. Chem..

[62]  J. Doye,et al.  Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters , 1999, cond-mat/9903305.

[63]  Robert H. Leary,et al.  Global Optima of Lennard-Jones Clusters , 1997, J. Glob. Optim..

[64]  G. Natta,et al.  The Crystal Structure of White Phosphorus. , 1930, Nature.

[65]  David Romero,et al.  A GENETIC ALGORITHM FOR LENNARD-JONES ATOMIC CLUSTERS , 1999 .

[66]  Riccardo Poli,et al.  Analysis of the publications on the applications of particle swarm optimisation , 2008 .

[67]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[68]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[69]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[70]  H. Borrmann,et al.  Crystal Structure of Ordered White Phosphorus(β-P) , 1987 .

[71]  Chris J. Pickard,et al.  Structures at high pressure from random searching , 2009 .

[72]  D. Corbridge,et al.  Structure of White Phosphorus: Single Crystal X-Ray Examination , 1952, Nature.

[73]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[74]  H. Borrmann,et al.  On the Polymorphism of White Phosphorus , 1997 .

[75]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[76]  R. Ahuja Calculated high pressure crystal structure transformations for phosphorus , 2003 .

[77]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[78]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[79]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .