Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory

[1]  Hui-Shen Shen,et al.  Functionally Graded Materials: Nonlinear Analysis of Plates and Shells , 2019 .

[2]  F. Yuan,et al.  Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory , 2017 .

[3]  Mahmoud Shariati,et al.  Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory , 2016 .

[4]  S. E. Ghiasian,et al.  Nonlinear thermal dynamic buckling of FGM beams , 2015 .

[5]  S. E. Ghiasian,et al.  Non-linear rapid heating of FGM beams , 2014 .

[6]  Hui-Shen Shen,et al.  Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments , 2014 .

[7]  A. Vosoughi Thermal Postbuckling Analysis of Functionally Graded Beams , 2014 .

[8]  Da-Guang Zhang,et al.  Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory , 2014 .

[9]  R. Ansari,et al.  Size-dependent buckling analysis of functionally graded third-order shear deformable microbeams including thermal environment effect , 2013 .

[10]  S. E. Ghiasian,et al.  Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation , 2013 .

[11]  J. Reddy,et al.  A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory , 2013 .

[12]  Da-Guang Zhang Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory , 2013 .

[13]  Shi-rong Li,et al.  Bending solutions of FGM Timoshenko beams from those of the homogenous Euler-Bernoulli beams , 2013 .

[14]  N. Wattanasakulpong,et al.  Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation , 2013 .

[15]  M. Eslami,et al.  Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations , 2013 .

[16]  M. Eslami,et al.  Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams , 2013 .

[17]  M. Eslami,et al.  Non-linear thermoelectrical stability analysis of functionally graded piezoelectric material beams , 2013 .

[18]  J. Reddy,et al.  Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory , 2013 .

[19]  Samir A. Emam,et al.  Static and stability analysis of nonlocal functionally graded nanobeams , 2013 .

[20]  M. Eslami,et al.  Thermomechanical buckling oftemperature-dependent FGM beams , 2013 .

[21]  Yiming Fu,et al.  Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment , 2012 .

[22]  C. Soares,et al.  A new higher order shear deformation theory for sandwich and composite laminated plates , 2012 .

[23]  M. A. Eltaher,et al.  Free vibration analysis of functionally graded size-dependent nanobeams , 2012, Appl. Math. Comput..

[24]  C. Soares,et al.  Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory , 2011 .

[25]  Samir A. Emam Analysis of shear-deformable composite beams in postbuckling , 2011 .

[26]  D. Kelly,et al.  Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams , 2011 .

[27]  M. Eslami,et al.  Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams , 2011 .

[28]  M. M. Aghdam,et al.  Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation , 2011 .

[29]  M. Eslami,et al.  Thermal Buckling of Piezoelectric Functionally Graded Material Beams , 2011 .

[30]  N. E. Meiche,et al.  A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate , 2011 .

[31]  M. Eslami,et al.  Thermal buckling analysis of functionally graded material beams , 2010 .

[32]  M. Şi̇mşek,et al.  Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories , 2010 .

[33]  Metin Aydogdu,et al.  A new shear deformation theory for laminated composite plates , 2009 .

[34]  Youhe Zhou,et al.  A theoretical analysis of FGM thin plates based on physical neutral surface , 2008 .

[35]  A. H. Tanrikulu,et al.  Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories , 2008 .

[36]  Guangyu Shi,et al.  A new simple third-order shear deformation theory of plates , 2007 .

[37]  Sébastien Mistou,et al.  Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity , 2003 .

[38]  J. Reddy Analysis of functionally graded plates , 2000 .

[39]  Kostas P. Soldatos,et al.  A transverse shear deformation theory for homogeneous monoclinic plates , 1992 .

[40]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[41]  M. Eslami,et al.  Vibration of a Temperature-Dependent Thermally Pre/Postbuckled FGM Beam Over a Nonlinear Hardening Elastic Foundation , 2014 .

[42]  E. Viola,et al.  General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels , 2013 .

[43]  R. Batra,et al.  Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams , 2013 .

[44]  Dong-Weon Lee,et al.  Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading , 2012 .

[45]  F. F. Mahmoud,et al.  Free vibration characteristics of a functionally graded beam by finite element method , 2011 .

[46]  Dong-weon Lee,et al.  A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading , 2011 .

[47]  M. Touratier,et al.  An efficient standard plate theory , 1991 .