EM Algorithms for Ordered Probit Models with Endogenous Regressors

We propose an EM algorithm to estimate ordered probit models with endogenous regressors. The proposed algorithm has a number of computational advantages in comparison to direct numerical maximization of the (limited information) log-likelihood function. First, the sequence of conditional M(aximization)-steps can all be computed analytically. Second, the algorithm updates the model parameters so that positive definiteness of the covariance matrix and monotonicity of cutpoints are naturally satisfied. Third, the variance parameters normalized for identification can be activated to accelerate convergence of the algorithm. The algorithm can be applied to models with dummy endogenous, continuous endogenous or latent endogenous regressors. A small Monte Carlo simulation experiment examines the finite sample performance of the proposed algorithms. Copyright The Author(s). Journal compilation Royal Economic Society 2009

[1]  J. Angrist,et al.  Digitized by the Internet Archive in 2011 with Funding from Estimation of Limited-dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice , 2011 .

[2]  G. Maddala Limited-dependent and qualitative variables in econometrics: Introduction , 1983 .

[3]  Richard Blundell,et al.  An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply , 1986 .

[4]  J. Brueckner,et al.  Social Interaction and Urban Sprawl , 2006, SSRN Electronic Journal.

[5]  P. András,et al.  Alternative sampling methods for estimating multivariate normal probabilities , 2003 .

[6]  Douglas M. Bates,et al.  Unconstrained parametrizations for variance-covariance matrices , 1996, Stat. Comput..

[7]  Xiao-Li Meng,et al.  Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .

[8]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[9]  Paul A. Ruud,et al.  Extensions of estimation methods using the EM algorithm , 1991 .

[10]  F. Famoye Continuous Univariate Distributions, Volume 1 , 1994 .

[11]  D. Rubin,et al.  Parameter expansion to accelerate EM : The PX-EM algorithm , 1997 .

[12]  Danny D. Dyer On Moments Estimation of the Parameters of a Truncated Bivariate Normal Distribution , 1973 .

[13]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[14]  Lung-fei Lee,et al.  Amemiya's Generalized Least Squares and Tests of Overidentification in Simultaneous Equation Models with Qualitative or Limited Dependent Variables , 1992 .

[15]  W. Evans,et al.  Finishing High School and Starting College: Do Catholic Schools Make a Difference? , 1995 .

[16]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[17]  J. Angrist,et al.  Estimation of Limited Dependent Variable Models With Dummy Endogenous Regressors , 2001 .

[18]  Alan Genz,et al.  Numerical computation of rectangular bivariate and trivariate normal and t probabilities , 2004, Stat. Comput..

[19]  Jeffrey M. Woodbridge Econometric Analysis of Cross Section and Panel Data , 2002 .

[20]  M GayDavid,et al.  Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983 .

[21]  Whitney K. Newey,et al.  Efficient estimation of limited dependent variable models with endogenous explanatory variables , 1987 .

[22]  Giulia Bettin,et al.  Instrumental Variable Interval Regression , 2009 .

[23]  Andrew Chesher,et al.  Residual analysis in the grouped and censored normal linear model , 1987 .

[24]  Myoung-jae Lee,et al.  Semi-parametric Estimation of Simultaneous Equations with Limited Dependent Variables: A Case Study of Female Labour Supply , 1995 .

[25]  Alberto Abadie Semiparametric instrumental variable estimation of treatment response models , 2003 .

[26]  David M. Gay,et al.  Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983, TOMS.

[27]  K. Train Discrete Choice Methods with Simulation , 2003 .

[28]  Patrali Chatterjee,et al.  Tests of the Specification of Univariate and Bivariate Ordered Probit , 1997, Review of Economics and Statistics.

[29]  D. Rivers,et al.  Limited Information Estimators and Exogeneity Tests for Simultaneous Probit Models , 1988 .

[30]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[31]  T. W. Anderson,et al.  Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations , 1949 .

[32]  Frank Bretz,et al.  Comparison of Methods for the Computation of Multivariate t Probabilities , 2002 .

[33]  Richard J. Smith Testing the normality assumption in multivariate simultaneous limited dependent variable models , 1987 .

[34]  R. Jennrich,et al.  Standard errors for EM estimation , 2000 .

[35]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .