Sparse radial basis function approximation with spatially variable shape parameters

We present an efficient greedy algorithm for constructing sparse radial basis function (RBF) approximations with spatially variable shape parameters. The central idea is to incrementally construct a sparse approximation by greedily selecting a subset of basis functions from a parameterized dictionary consisting of RBFs centered at all of the training points. An incremental thin QR update scheme based on the Gram–Schmidt process with reorthogonalization is employed to efficiently update the weights of the sparse RBF approximation at each iteration. In addition, the shape parameter of the basis function chosen at each iteration is tuned by minimizing the l2-norm of the training residual, while an approximate leave-one-out error metric is used as the dominant stopping criterion. Numerical studies are presented for a range of test functions to demonstrate that the proposed algorithm enables the efficient construction of RBF approximations with spatially variable shape parameters. It is shown that, compared to a classical RBF model with a single tunable shape parameter and Gaussian process models with an anisotropic Gaussian covariance function, the proposed algorithm can provide significant improvements in accuracy, cost, and sparsity, particularly for high-dimensional datasets.

[1]  Mark D. Brandyberry,et al.  Thermal problem solution using a surrogate model clustering technique , 2008 .

[2]  Rafael Martí,et al.  Experimental Testing of Advanced Scatter Search Designs for Global Optimization of Multimodal Functions , 2005, J. Glob. Optim..

[3]  Bengt Fornberg,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .

[4]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[5]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[6]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[7]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[8]  Ranjan Ganguli,et al.  Rotorcraft parameter estimation using radial basis function neural network , 2010, Appl. Math. Comput..

[9]  Amir F. Atiya,et al.  An Empirical Comparison of Machine Learning Models for Time Series Forecasting , 2010 .

[10]  R. E. Carlson,et al.  Sparse approximate multiquadric interpolation , 1994 .

[11]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[12]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[13]  Mohan K. Kadalbajoo,et al.  A radial basis functions based finite differences method for wave equation with an integral condition , 2015, Appl. Math. Comput..

[14]  Ankur Srivastava,et al.  A Sparse Greedy Self-Adaptive Algorithm for Classification of Data , 2010, Adv. Data Sci. Adapt. Anal..

[15]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[16]  Vladimir Temlyakov,et al.  CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .

[17]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[18]  Dianne P. O'Leary,et al.  Variable projection for nonlinear least squares problems , 2012, Computational Optimization and Applications.

[19]  R. E. Carlson,et al.  Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .

[20]  M. Floater,et al.  Thinning algorithms for scattered data interpolation , 1998 .

[21]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[22]  Lothar Reichel,et al.  Algorithm 686: FORTRAN subroutines for updating the QR decomposition , 1990, TOMS.

[23]  Ahmad Golbabai,et al.  Stability and convergence of radial basis function finite difference method for the numerical solution of the reaction-diffusion equations , 2015, Appl. Math. Comput..

[24]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[25]  G. Wahba Spline models for observational data , 1990 .

[26]  Erik Lehto,et al.  Rotational transport on a sphere: Local node refinement with radial basis functions , 2010, J. Comput. Phys..

[27]  Holger Wendland,et al.  Adaptive greedy techniques for approximate solution of large RBF systems , 2000, Numerical Algorithms.

[28]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[29]  Jeremy Levesley,et al.  Better bases for radial basis function interpolation problems , 2011, J. Comput. Appl. Math..

[30]  J. Tropp Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..

[31]  J. Friedman Multivariate adaptive regression splines , 1990 .

[32]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[33]  Robert Schaback,et al.  An improved subspace selection algorithm for meshless collocation methods , 2009 .

[34]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[35]  Paolo Bientinesi,et al.  Large-scale linear regression: Development of high-performance routines , 2015, Appl. Math. Comput..

[36]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[37]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .

[39]  Robert B. Gramacy,et al.  Cases for the nugget in modeling computer experiments , 2010, Statistics and Computing.

[40]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[41]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[42]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[43]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[44]  Wei Chen,et al.  A non‐stationary covariance‐based Kriging method for metamodelling in engineering design , 2007 .

[45]  Robert Schaback,et al.  An Adaptive Greedy Algorithm for Solving Large RBF Collocation Problems , 2004, Numerical Algorithms.

[46]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[47]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[48]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[49]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[50]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[51]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[52]  Timothy W. Simpson,et al.  Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come? , 2014 .