Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle

[1]  P. Kelemen,et al.  Along‐Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust , 2013 .

[2]  B. Taylor,et al.  The tectonic evolution of the South China Basin , 2013 .

[3]  M. Wilson,et al.  The Origin of Intra-plate Ocean Island Basalts (OIB): the Lid Effect and its Geodynamic Implications , 2011 .

[4]  M. Thirlwall,et al.  Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo: Implications for high-Nb basalt in subduction zones , 2010 .

[5]  C. Dimalanta,et al.  Geology, Geochemistry and Chromite Mineralization Potential of the Amnay Ophiolitic Complex, Mindoro, Philippines , 2009 .

[6]  Albrecht W. Hofmann,et al.  Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean , 2008, Nature.

[7]  R. Solidum,et al.  Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines , 2007 .

[8]  T. Morishita,et al.  Occurrence and chemical composition of amphiboles and related minerals in corundum-bearing mafic rock from the Horoman Peridotite Complex, Japan , 2007 .

[9]  A. Hofmann,et al.  Origin of MORB enrichment and relative trace element compatibilities along the Mid‐Atlantic Ridge between 10° and 24°N , 2006 .

[10]  D. Sauter,et al.  Tectonics at the axis of the very slow spreading Southwest Indian Ridge: Insights from TOBI side‐scan sonar imagery , 2006 .

[11]  C. Langmuir,et al.  Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics , 2004 .

[12]  Yi-Ching Yeh,et al.  New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and their Tectonic Implications , 2004 .

[13]  L. Patiño,et al.  High-Nb Lavas from Northern Palawan: implications for high field strength enrichment in southern Philippine Arc , 2003 .

[14]  S. Verma,et al.  Beyond Subduction and Plumes: A Unified Tectonic-Petrogenetic Model for the Mexican Volcanic Belt , 2000 .

[15]  Don L. Anderson,et al.  The thermal state of the upper mantle; No role for mantle plumes , 2000 .

[16]  N. Arndt Geochemistry: Hot heads and cold tails , 2000, Nature.

[17]  J. Bédard Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components , 1999 .

[18]  B. Hardarson,et al.  Thermal and chemical structure of the Iceland plume , 1997 .

[19]  Jianzhong Zhang,et al.  Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone , 1996 .

[20]  Paul Tapponnier,et al.  Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia , 1993 .

[21]  F. Albarède How deep do common basaltic magmas form and differentiate , 1992 .

[22]  R. Carlson,et al.  Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component , 1992 .

[23]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[24]  B. Jahn Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence , 1986 .

[25]  S. Hart,et al.  Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume , 1985 .

[26]  C. Müller,et al.  Middle Oligocene oceanic crust of South China Sea jammed into Mindoro collision zone (Philippines) , 1985 .

[27]  R. Evans,et al.  Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N , 1983 .

[28]  John W. Shervais,et al.  Ti-V plots and the petrogenesis of modern and ophiolitic lavas , 1982 .

[29]  M. Searle,et al.  The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  W. Ernst,et al.  Paleogeographic origins of the Miocene East Taiwan Ophiolite , 1981 .

[31]  David A. Wood,et al.  The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province , 1980 .

[32]  Julian A. Pearce,et al.  Tectonic setting of basic volcanic rocks determined using trace element analyses , 1973 .

[33]  D. Green Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions , 1973 .

[34]  A. Masuda,et al.  Fine structures of mutually normalized rare-earth patterns of chondrites , 1973 .

[35]  D. Shaw Trace element fractionation during anatexis , 1970 .

[36]  A. Imai,et al.  Petrography, geochemistry, and tectonics of a rifted fragment of Mainland Asia: evidence from the Lasala Formation, Mindoro Island, Philippines , 2011, International Journal of Earth Sciences.

[37]  E. Stolper,et al.  Monte Carlo Simulations of Metasomatic Enrichment in the Lithosphere and Implications for the Source of Alkaline Basalts , 2011 .

[38]  J. Eiler Inside the subduction factory , 2003 .

[39]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[40]  C. Langmuir,et al.  A general mixing equation with applications to Icelandic basalts , 1978 .