The role of the skin microbiome in atopic dermatitis.

[1]  G. Uzel,et al.  First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. , 2018, JCI insight.

[2]  E. Rosenberg,et al.  The hologenome concept of evolution after 10 years , 2018, Microbiome.

[3]  Jesse H. Arbuckle,et al.  Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair , 2018, Cell.

[4]  Julia Oh,et al.  A commensal strain of Staphylococcus epidermidis protects against skin neoplasia , 2018, Science Advances.

[5]  A. Horswill,et al.  Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. , 2017, Cell host & microbe.

[6]  R. Geha,et al.  Staphylococcus aureus Epicutaneous Exposure Drives Skin Inflammation via IL-36-Mediated T Cell Responses. , 2017, Cell host & microbe.

[7]  G. Núñez,et al.  Staphylococcus aureus Virulent PSMα Peptides Induce Keratinocyte Alarmin Release to Orchestrate IL-17-Dependent Skin Inflammation. , 2017, Cell host & microbe.

[8]  J. Silverberg,et al.  Efficacy of bleach baths in reducing severity of atopic dermatitis: A systematic review and meta-analysis. , 2017, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[9]  Allyson L. Byrd,et al.  Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis , 2017, Science Translational Medicine.

[10]  R. Gallo Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. , 2017, The Journal of investigative dermatology.

[11]  J. Sonnenburg,et al.  Commensal Microbes and Hair Follicle Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin. , 2017, Cell host & microbe.

[12]  P. Dorrestein,et al.  Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis , 2017, Science Translational Medicine.

[13]  Alison Vrbanac,et al.  Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. , 2017, The Journal of investigative dermatology.

[14]  H. Kong,et al.  Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year , 2017, The Journal of allergy and clinical immunology.

[15]  R. Geha,et al.  Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. , 2016, The Journal of investigative dermatology.

[16]  M. Willmann,et al.  Human commensals producing a novel antibiotic impair pathogen colonization , 2016, Nature.

[17]  K. Stone,et al.  Transplantation of human skin microbiota in models of atopic dermatitis. , 2016, JCI insight.

[18]  M. Fischbach,et al.  A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal Microbes. , 2015, Immunity.

[19]  K. Theis,et al.  Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes , 2015, PLoS biology.

[20]  H. Kong,et al.  Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis. , 2015, Immunity.

[21]  S. Nutten Atopic Dermatitis: Global Epidemiology and Risk Factors , 2015, Annals of Nutrition and Metabolism.

[22]  C. Bogdan Nitric oxide synthase in innate and adaptive immunity: an update. , 2015, Trends in immunology.

[23]  Christoph Wilhelm,et al.  Commensal–dendritic-cell interaction specifies a unique protective skin immune signature , 2015, Nature.

[24]  G. Núñez,et al.  Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE₂. , 2014, Cell host & microbe.

[25]  Jing Wang,et al.  Topical hypochlorite ameliorates NF-κB-mediated skin diseases in mice. , 2013, The Journal of clinical investigation.

[26]  K. Cease,et al.  Staphylococcus δ-toxin induces allergic skin disease by activating mast cells , 2013, Nature.

[27]  K. Cease,et al.  Staphylococcus Δ-toxin Promotes Mouse Allergic Skin Disease by Inducing Mast Cell Degranulation Hhs Public Access , 2022 .

[28]  P. Schlievert,et al.  Staphylococcal and Streptococcal Superantigen Exotoxins , 2013, Clinical Microbiology Reviews.

[29]  R. Geha,et al.  Development of skin lesions in filaggrin-deficient mice is dependent on adaptive immunity. , 2013, The Journal of allergy and clinical immunology.

[30]  Dongqing Li,et al.  A Novel Lipopeptide from Skin Commensal Activates TLR2/CD36-p38 MAPK Signaling to Increase Antibacterial Defense against Bacterial Infection , 2013, PloS one.

[31]  G. Gloor,et al.  Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut , 2013, Microbiome.

[32]  Karsten Zengler,et al.  The microbiome extends to subepidermal compartments of normal skin , 2012, Nature Communications.

[33]  C. Deming,et al.  Compartmentalized Control of Skin Immunity by Resident Commensals , 2012, Science.

[34]  A. Borkowski,et al.  Ultraviolet radiation damages self noncoding RNA and is detected by TLR3 , 2012, Nature Medicine.

[35]  L. Hooper,et al.  Epithelial antimicrobial defence of the skin and intestine , 2012, Nature Reviews Immunology.

[36]  Julia Oh,et al.  Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis , 2012, Genome research.

[37]  A. Lowe,et al.  A phase i study of daily treatment with a ceramide-dominant triple lipid mixture commencing in neonates , 2012, BMC Dermatology.

[38]  C. Flohr,et al.  Atopic dermatitis and the hygiene hypothesis revisited. , 2011, Current problems in dermatology.

[39]  H. Ogawa,et al.  Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway. , 2010, The Journal of allergy and clinical immunology.

[40]  Allen F Ryan,et al.  Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. , 2010, The Journal of investigative dermatology.

[41]  M. Boguniewicz,et al.  History of eczema herpeticum is associated with the inability to induce human β‐defensin (HBD)‐2, HBD‐3 and cathelicidin in the skin of patients with atopic dermatitis , 2010, The British journal of dermatology.

[42]  H. Williams,et al.  Interventions to reduce Staphylococcus aureus in the management of atopic eczema: an updated Cochrane review , 2010, The British journal of dermatology.

[43]  Yoshimitsu Mizunoe,et al.  Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization , 2010, Nature.

[44]  F. Granath,et al.  Injury downregulates the expression of the human cathelicidin protein hCAP18/LL‐37 in atopic dermatitis , 2010, Experimental dermatology.

[45]  V. Nizet,et al.  Staphylococcus epidermidis Antimicrobial δ-Toxin (Phenol-Soluble Modulin-γ) Cooperates with Host Antimicrobial Peptides to Kill Group A Streptococcus , 2010, PloS one.

[46]  Chun-Ming Huang,et al.  Commensal bacteria regulate TLR3-dependent inflammation following skin injury , 2009, Nature Medicine.

[47]  J. Jansson,et al.  Changes in the Composition of the Human Fecal Microbiome After Bacteriotherapy for Recurrent Clostridium difficile-associated Diarrhea , 2009, Journal of clinical gastroenterology.

[48]  K. Barnes,et al.  Phenotype of atopic dermatitis subjects with a history of eczema herpeticum. , 2009, The Journal of allergy and clinical immunology.

[49]  C. Deming,et al.  Topographical and Temporal Diversity of the Human Skin Microbiome , 2009, Science.

[50]  C. Sutherland,et al.  Filaggrin in the frontline: role in skin barrier function and disease , 2009, Journal of Cell Science.

[51]  T. Volz,et al.  Effects of nonpathogenic gram‐negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double‐blind, placebo‐controlled clinical study , 2008, The British journal of dermatology.

[52]  A. Woodcock,et al.  Gene-Environment Interaction in the Onset of Eczema in Infancy: Filaggrin Loss-of-Function Mutations Enhanced by Neonatal Cat Exposure , 2008, PLoS medicine.

[53]  Deborah V Dawson,et al.  Thematic Review Series: Skin Lipids. Antimicrobial lipids at the skin surface Published, JLR Papers in Press, September 28, 2007. , 2008, Journal of Lipid Research.

[54]  M. Moffatt,et al.  Filaggrin mutations in children with severe atopic dermatitis. , 2007, The Journal of investigative dermatology.

[55]  C. Hill,et al.  Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118 , 2007, Proceedings of the National Academy of Sciences.

[56]  Colin N A Palmer,et al.  Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema , 2007, Nature Genetics.

[57]  T. Giese,et al.  Staphylococcus aureus Protein A Triggers T Cell-Independent B Cell Proliferation by Sensitizing B Cells for TLR2 Ligands1 , 2007, The Journal of Immunology.

[58]  T. Bieber,et al.  Mechanism of HBD-3 deficiency in atopic dermatitis. , 2006, Clinical immunology.

[59]  M. Smeltzer,et al.  Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections , 2006, Arthritis research & therapy.

[60]  N. Klopp,et al.  Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. , 2006, The Journal of allergy and clinical immunology.

[61]  Richard Martin,et al.  Improvement of atopic dermatitis skin symptoms by Vitreoscilla filiformis bacterial extract. , 2006, European journal of dermatology : EJD.

[62]  Colin N A Palmer,et al.  Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis , 2006, Nature Genetics.

[63]  James F. Jones,et al.  Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. , 2006, Immunity.

[64]  S. Bale,et al.  Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris , 2006, Nature Genetics.

[65]  H. Williams,et al.  Atopic dermatitis and the ‘hygiene hypothesis’: too clean to be true? , 2005, The British journal of dermatology.

[66]  W. Shafer,et al.  Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases , 2004, Antimicrobial Agents and Chemotherapy.

[67]  M. Melbye,et al.  Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis during first 18 months of life , 2004, BMJ : British Medical Journal.

[68]  D. Leung Infection in atopic dermatitis , 2003, Current opinion in pediatrics.

[69]  Tomas Ganz,et al.  Endogenous antimicrobial peptides and skin infections in atopic dermatitis. , 2002, The New England journal of medicine.

[70]  P. Kaszycki,et al.  Proteolytic Activity of Staphylococcus aureus Strains Isolated from the Colonized Skin of Patients with Acute-Phase Atopic Dermatitis , 2002, European Journal of Clinical Microbiology and Infectious Diseases.

[71]  P. Elias,et al.  Ceramide-dominant, barrier-repair lipids improve childhood atopic dermatitis. , 2001, Archives of dermatology.

[72]  G. Jung,et al.  Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives , 1999, FEBS letters.

[73]  J. Leyden,et al.  Staphylococcus aureus in the lesions of atopic dermatitis , 1974, The British journal of dermatology.

[74]  F. Watt,et al.  Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility. , 2015, The Journal of investigative dermatology.

[75]  S. Kaesler,et al.  Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. , 2014, The Journal of investigative dermatology.

[76]  V. Nizet,et al.  Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. , 2010, The Journal of investigative dermatology.

[77]  S. Foster,et al.  The role and regulation of the extracellular proteases of Staphylococcus aureus. , 2004, Microbiology.