Airborne geophysical surveys of the lower Mississippi Valley demonstrate system-scale mapping of subsurface architecture

[1]  R. V. Van Arsdale,et al.  New 26Al/10Be and (U-Th)/He constraints on the age of the Upland Complex, central Mississippi River Valley , 2020 .

[2]  C. Haugh,et al.  Using Boosted Regression Tree Models to Predict Salinity in Mississippi Embayment Aquifers, Central United States , 2020, JAWRA Journal of the American Water Resources Association.

[3]  N. L. Foks,et al.  Quantifying model structural uncertainty using airborne electromagnetic data , 2020, Geophysical Journal International.

[4]  E. Auken,et al.  Characterizing the diverse hydrogeology underlying rivers and estuaries using new floating transient electromagnetic methodology. , 2020, The Science of the total environment.

[5]  T. A. Davis,et al.  Probabilistic Categorical Groundwater Salinity Mapping From Airborne Electromagnetic Data Adjacent to California's Lost Hills and Belridge Oil Fields , 2020, Water Resources Research.

[6]  Bernhard Siemon,et al.  Airborne Electromagnetic, Magnetic, and Radiometric Surveys at the German North Sea Coast Applied to Groundwater and Soil Investigations , 2020, Remote. Sens..

[7]  B. Minsley,et al.  Evidence for Late Quaternary Deformation Along Crowleys Ridge, New Madrid Seismic Zone , 2020, Tectonics.

[8]  Shakeel Ahmed,et al.  Large Scale Mapping of Fractures and Groundwater Pathways in Crystalline Hardrock By AEM , 2019, Scientific Reports.

[9]  R. V. Van Arsdale,et al.  Quaternary Uplift in the Lower Mississippi River Valley , 2019, The Journal of Geology.

[10]  R. Knight,et al.  Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California , 2018, Ground water.

[11]  Ingmar Nitze,et al.  21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes , 2018, Nature Communications.

[12]  F. Landerer,et al.  Emerging trends in global freshwater availability , 2018, Nature.

[13]  B. Minsley,et al.  Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability , 2018 .

[14]  Gabriel B. Senay,et al.  Annual Estimates of Recharge, Quick‐Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using Empirical Regression Equations , 2017 .

[15]  J. K. Carmichael,et al.  Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA , 2017, Hydrogeology Journal.

[16]  B. Minsley,et al.  Automatic mapping of the base of aquifer — A case study from Morrill, Nebraska , 2017 .

[17]  J. Abraham,et al.  Three‐dimensional architecture and hydrostratigraphy of cross‐cutting buried valleys using airborne electromagnetics, glaciated Central Lowlands, Nebraska, USA , 2017 .

[18]  Andrew Binley,et al.  An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data , 2015 .

[19]  H. Anschütz,et al.  Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking , 2015 .

[20]  H. Dugan,et al.  Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley , 2015, Nature Communications.

[21]  J. Famiglietti The global groundwater crisis , 2014 .

[22]  R. V. Arsdale,et al.  Pleistocene–Holocene transition in the central Mississippi River valley , 2014 .

[23]  J. Gun,et al.  Groundwater around the World: A Geographic Synopsis , 2013 .

[24]  T. Törnqvist,et al.  Rapid and widespread response of the Lower Mississippi River to eustatic forcing during the last glacial-interglacial cycle , 2012 .

[25]  Clifford I. Voss,et al.  Airborne electromagnetic imaging of discontinuous permafrost , 2012 .

[26]  L. N. Plummer,et al.  A comparison of recharge rates in aquifers of the United States based on groundwater-age data , 2011 .

[27]  P. Döll,et al.  Groundwater use for irrigation - a global inventory , 2010 .

[28]  Esben Auken,et al.  A Global Measure for Depth of Investigation , 2010 .

[29]  É. Calais,et al.  Triggering of New Madrid seismicity by late-Pleistocene erosion , 2010, Nature.

[30]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[31]  S. Silvestri,et al.  Surface water–groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example , 2010 .

[32]  A. Christiansen,et al.  A review of helicopter‐borne electromagnetic methods for groundwater exploration , 2009 .

[33]  R. V. Arsdale,et al.  Reelfoot rift and its impact on Quaternary deformation in the central Mississippi River valley , 2008 .

[34]  R. Hunt,et al.  Are Models Too Simple? Arguments for Increased Parameterization , 2007, Ground water.

[35]  M. Blum,et al.  Fluvial evolution of the lower Mississippi River valley during the last 100 k.y. glacial cycle: Response to glaciation and sea-level change , 2007 .

[36]  J. B. Harris,et al.  Geological Characterization of the Idalia Hill Fault Zone and Its Structural Association with the Commerce Geophysical Lineament, Idalia, Missouri , 2006 .

[37]  Matthew W Becker,et al.  Potential for Satellite Remote Sensing of Ground Water , 2006, Ground water.

[38]  R. V. Arsdale,et al.  The Mississippi Embayment, North America: a first order continental structure generated by the Cretaceous superplume mantle event , 2002 .

[39]  T. Reilly,et al.  Flow and Storage in Groundwater Systems , 2002, Science.

[40]  Matthew Rodell,et al.  The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US , 2002 .

[41]  T. Sisson,et al.  Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano , 2001, Nature.

[42]  Caleb Plunkett,et al.  An example of 3D conductivity mapping using the TEMPEST airborne electromagnetic system , 2000 .

[43]  D. Hoffman,et al.  Deformation and quaternary faulting in southeast Missouri across the Commerce geophysical lineament , 1999, Bulletin of the Seismological Society of America.

[44]  Kenneth W. Hudnut,et al.  Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California , 1998 .

[45]  D. Fitterman,et al.  Helicopter EM mapping of saltwater intrusion in Everglades National Park, Florida , 1998 .

[46]  T. G. Hildenbrand,et al.  Commerce geophysical lineament—Its source, geometry, and relation to the Reelfoot rift and New Madrid seismic zone , 1997 .

[47]  A. Hatheway Geomorphology and Quaternary Geologic History of the Lower Mississippi River Valley , 1996 .

[48]  K. Shedlock,et al.  The origin of Crowley's Ridge, northeastern Arkansas: Erosional remnant or tectonic uplift? , 1995 .

[49]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[50]  T. Hildenbrand Rift Structure of the Northern Mississippi Embayment from the analysis of gravity and magnetic data , 1985 .

[51]  M. H. Waxman,et al.  Electrical Conductivities in Oil-Bearing Shaly Sands , 1968 .

[52]  William Herbert Hobbs,et al.  Geological Investigation of the Alluvial Valley of the Lower Mississippi River , 1947 .

[53]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[54]  V. L. McGuire,et al.  Altitude of the potentiometric surface in the Mississippi River Valley alluvial aquifer, spring 2018 , 2020, Scientific Investigations Map.

[55]  J. Lovelace,et al.  Estimated groundwater withdrawals from principal aquifers in the United States, 2015 , 2020 .

[56]  Bruce D. Smith,et al.  High-resolution airborne geophysical survey of the Shellmound, Mississippi area , 2020 .

[57]  Jaime A. Painter,et al.  Geostatistical estimation of the bottom altitude and thickness of the Mississippi River Valley alluvial aquifer , 2019, Scientific Investigations Map.

[58]  Mustapha Alhassan,et al.  The Mississippi Alluvial Plain aquifers—An engine for economic activity , 2019, Fact Sheet.

[59]  K. Belitz,et al.  Tritium as an indicator of modern, mixed, and premodern groundwater age , 2019, Scientific Investigations Report.

[60]  Nancy L. Barber,et al.  Estimated use of water in the United States in 2015 , 2018 .

[61]  H. Welch,et al.  The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008 , 2015 .

[62]  Nancy L. Barber,et al.  Estimated use of water in the United States in 2010 , 2014 .

[63]  Brian R. Clark,et al.  Groundwater availability of the Mississippi embayment , 2011 .

[64]  S. Guner United Nations World Water Assessment Programme , 2011 .

[65]  B. Clark,et al.  The Mississippi Embayment Regional Aquifer Study (MERAS): Documentation of a groundwater-flow model constructed to assess water availability in the Mississippi embayment , 2009 .

[66]  B. Clark,et al.  Geophysical Log Database for the Mississippi Embayment Regional Aquifer Study (MERAS) , 2008 .

[67]  B. Clark,et al.  Digital Surfaces and Thicknesses of Selected Hydrogeologic Units within the Mississippi Embayment Regional Aquifer Study (MERAS) , 2008 .

[68]  G. Mahon,et al.  THICKNESS OF THE MISSISSIPPI RIVER VALLEY CONFINING UNIT, EASTERN ARKANSAS , 1993 .

[69]  E. M. Cushing,et al.  General geology of the Mississippi embayment , 1964 .