Two-Step System Identification and Trajectory Tracking Control of a Small Fixed-Wing UAV

An approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling method utilizes stepwise multiple regression to determine relevant explanatory terms for the aerodynamic coefficients. A dynamically feasible trajectory is then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discrete-time feedback controllers are further designed to regulate the vehicle along the desired reference trajectory. Simulations in a realistic operational environment as well as flight testing of the feedback controllers on the aircraft platform demonstrate the capabilities of the approach.

[1]  Charles R. Chalk,et al.  Background Information and User Guide for Mil-F-8785B (ASG), 'Military Specification-Flying Qualities of Piloted Airplanes' , 1969 .

[2]  Warren F. Phillips,et al.  Mechanics of Flight , 2004 .

[3]  Sanghyuk Park Autonomous Aerobatic Flight by Three-Dimensional Path- Following with Relaxed Roll Constraint , 2011 .

[4]  J. A. Mulder,et al.  Output Error Method and Two Step Method for Aerodynamic Model Identification , 2005 .

[5]  Florian Holzapfel,et al.  Trajectory Optimization Applied to Air Races , 2009 .

[6]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[7]  Randal W. Beard,et al.  Quaternion Control for Autonomous Path Following Maneuvers , 2012, Infotech@Aerospace.

[8]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[9]  Yangquan Chen,et al.  A Survey and Categorization of Small Low-Cost Unmanned Aerial Vehicle System Identification , 2014, J. Intell. Robotic Syst..

[10]  Jonathan P. How,et al.  Hybrid Model for Trajectory Planning of Agile Autonomous Vehicles , 2004, J. Aerosp. Comput. Inf. Commun..

[11]  Robert F. Stengel,et al.  Determination of nonlinear aerodynamic coefficients using the estimation-before-modeling method , 1988 .

[12]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[13]  B. Mettler,et al.  Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes , 2006 .

[14]  T. Beal,et al.  Digital simulation of atmospheric turbulence for Dryden and von Karman models , 1993 .

[15]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[16]  Geir E. Dullerud,et al.  A new approach for analysis and synthesis of time-varying systems , 1999, IEEE Trans. Autom. Control..

[17]  Mazen Farhood,et al.  Two-step system identification for control of small UAVs along pre-specified trajectories , 2014, 2014 American Control Conference.

[18]  Geir E. Dullerud,et al.  LMI tools for eventually periodic systems , 2002, Syst. Control. Lett..

[19]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[20]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[21]  Jan Albert Mulder,et al.  Decomposition of Aircraft State and Parameter Estimation Problems , 1994 .

[22]  Matthias Bittner,et al.  A Multi-Model Gauss Pseudospectral Optimization Method for Aircraft Trajectories , 2012 .

[23]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  J. A. Mulder,et al.  NON-LINEAR AIRCRAFT FLIGHT PATH RECONSTRUCTION REVIEW AND NEW ADVANCES , 1999 .

[25]  Jitendra R. Raol,et al.  Modelling and Parameter Estimation of Dynamic Systems , 1992 .

[26]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[27]  H. Stalford High-alpha aerodynamic model identification of the T-2C aircraft using the EBM system identification method , 1980 .

[28]  H. L. Stalford,et al.  High-Alpha Aerodynamic Model Identification of T-2C Aircraft Using the EBM Method , 1981 .

[29]  Mark B. Tischler,et al.  Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples , 2006 .

[30]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[31]  Celso Braga de Mendonca Flight Vehicle System Identification: A Time-Domain MethodologyJategaonkarR. V., Progress in Aeronautics and Astronautics, 2nd ed., AIAA, Reston, VA, 2015, 648 pp., $119.95. , 2016 .

[32]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[33]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[34]  Mazen Farhood,et al.  Nonstationary LPV control for trajectory tracking: a double pendulum example , 2012, Int. J. Control.

[35]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[36]  Timothy W. McLain,et al.  Aerobatic Maneuvering of Miniature Air Vehicles Using Attitude Trajectories , 2008 .

[37]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[38]  William W. Hager,et al.  Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..

[39]  Mazen Farhood,et al.  LPV Control of Nonstationary Systems: A Parameter-Dependent Lyapunov Approach , 2012, IEEE Transactions on Automatic Control.

[40]  Geir E. Dullerud,et al.  Duality and eventually periodic systems , 2005 .

[41]  H. Theil,et al.  Economic Forecasts and Policy. , 1959 .

[42]  A. G. Sreenatha,et al.  Attitude Dynamics Identification of Unmanned Aircraft Vehicle , 2006 .

[43]  Robert C. Nelson,et al.  Flight Stability and Automatic Control , 1989 .

[44]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[45]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[46]  Alfonso C. Paris,et al.  Nonlinear Model Development from Flight-Test Data for F/A-18E Super Hornet , 2003 .

[47]  R. Fink,et al.  Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[48]  J. Whidborne,et al.  Quaternion-Based Inverse Dynamics Model for Expressing Aerobatic Aircraft Trajectories , 2009 .

[49]  YangQuan Chen,et al.  Small low-cost unmanned aerial vehicle system identification: A survey and categorization , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[50]  David J. Grymin Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles , 2013 .

[51]  Mazen Farhood,et al.  Development and Modeling of a Low-Cost Unmanned Aerial Vehicle Research Platform , 2015, J. Intell. Robotic Syst..

[52]  Robert C. Nelson,et al.  Flight Stability and Automatic Control 2nd Edition , 1998 .

[53]  Matthias Bittner,et al.  An Automatic Mesh Refinement Method for Aircraft Trajectory Optimization Problems , 2013 .

[54]  Pascal Gahinet,et al.  Explicit controller formulas for LMI-based H∞ synthesis , 1996, Autom..

[55]  Ute Hoffmann Aircraft System Identification Theory And Practice , 2016 .

[56]  Bruce P. Gibbs,et al.  Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook , 2011 .

[57]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[58]  Austin Murch,et al.  System Identification for Small, Low-Cost, Fixed-Wing Unmanned Aircraft , 2013 .

[59]  Mazen Farhood,et al.  Optimal control of a small fixed-wing UAV about concatenated trajectories , 2015 .