Analysis of forces for micromanipulations in dry and liquid media

During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals and electrostatic) forces determine the behaviour of the micro-objects rather than the inertial forces. The aim of this article is to give an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. This article introduces a review of the major differences between dry and submerged micromanipulations. The theoretical influences of the medium on van der Waals forces, electrostatic forces, pull-off forces and hydrodynamic forces are presented. Experimental force measurements based on an AFM system are carried out. These experiments exhibit a correlation better than 40% between the theoretical forces and the measured forces (except for pull-off in water). Finally, some comparative experimental micromanipulation results are described and show the advantages of the liquid medium.

[1]  H. von Känel,et al.  AFM-study of sticking effects for microparts handling , 2000 .

[2]  R. A. Bowling,et al.  A Theoretical Review of Particle Adhesion , 1988 .

[3]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[4]  L. Lee The Chemistry and Physics of Solid Adhesion , 1991 .

[5]  Yves Rollot Micro-manipulations par adhesion : modelisations dynamiques et experimentations , 2000 .

[6]  Richard Phillips Feynman,et al.  Infinitesimal machinery , 1993 .

[7]  Heikki N. Koivo,et al.  Ambient environmental effects in micro/nano handling , 2004 .

[8]  Cédric Clévy,et al.  Comparison between micro-objects manipulations in dry and liquid mediums , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[9]  Roe-Hoan Yoon,et al.  A study of hydrophobic coagulation , 1990 .

[10]  S. Yariv,et al.  Physical Chemistry of Surfaces , 1979 .

[11]  Johnson,et al.  An Adhesion Map for the Contact of Elastic Spheres , 1997, Journal of colloid and interface science.

[12]  Katsuzo Okada,et al.  Investigation of micro-adhesion by atomic force microscopy , 2001 .

[13]  W. Cleghorn,et al.  Microassembly of 3-D microstructures using a compliant, passive microgripper , 2004, Journal of Microelectromechanical Systems.

[14]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[15]  Y Rollot,et al.  Micro-robotics : a Dynamical Model of Micromanipulation by Adhesion , .

[16]  T. Camesano,et al.  Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442. , 2003, Biomacromolecules.

[17]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[18]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Arnaud Hubert,et al.  A micromanipulation cell including a tool changer , 2005 .

[20]  Francois Creuzet,et al.  Atomic force microscopy for local characterization of surface acid-base properties , 1993 .

[21]  Metin Sitti,et al.  Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments , 2003 .

[22]  Dominiek Reynaerts,et al.  Assembly of Microsystems , 2000 .

[23]  David Quéré,et al.  Gouttes, bulles, perles et ondes , 2005 .

[24]  A. D. McLachlan,et al.  Three-body dispersion forces , 1963 .

[25]  Ronald S. Fearing,et al.  A Planar Milli-Robot System on an Air Bearing , 1996 .

[26]  M. Sitti Atomic force microscope probe based controlled pushing for nanotribological characterization , 2004, IEEE/ASME Transactions on Mechatronics.

[27]  T. Udeshi,et al.  Assembly sequence planning for automated micro assembly , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[28]  Jan Peirs,et al.  Design of micromechatronic systems: scale laws, technologies, and medical applications , 2001 .

[29]  Stéphane Régnier,et al.  Manipulation of micro-objects using adhesion forces and dynamical effects , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).