A New Two-Step Proximal Algorithm of Solving the Problem of Equilibrium Programming

We propose a new iterative two-step proximal algorithm for solving the problem of equilibrium programming in a Hilbert space. This method is a result of extension of L.D. Popov’s modification of Arrow-Hurwicz scheme for approximation of saddle points of convex-concave functions. The convergence of the algorithm is proved under the assumption that the solution exists and the bifunction is pseudo-monotone and Lipschitz-type.

[1]  A. Moudafi Proximal point algorithm extended to equilibrium problems , 1999 .

[2]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[3]  Wataru Takahashi,et al.  Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces , 2007 .

[4]  Milojica Jacimovic,et al.  A second-order continuous method for solving quasi-variational inequalities , 2011 .

[5]  A. Antipin Equilibrium Programming Problems: Prox-Regularization and Prox-Methods , 1997 .

[6]  G. Mastroeni On Auxiliary Principle for Equilibrium Problems , 2003 .

[7]  L. M. Chabak,et al.  A Strongly Convergent Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators , 2015 .

[8]  Vladimir V. Semenov A Strongly Convergent Splitting Method for Systems of Operator Inclusions with Monotone Operators , 2014 .

[9]  V. Semenov Strongly Convergent Algorithms for Variational Inequality Problem Over the Set of Solutions the Equilibrium Problems , 2014 .

[10]  E. A. Nurminski,et al.  The use of additional diminishing disturbances in Fejer models of iterative algorithms , 2008 .

[11]  Phan Tu Vuong,et al.  Extragradient Methods and Linesearch Algorithms for Solving Ky Fan Inequalities and Fixed Point Problems , 2012, J. Optim. Theory Appl..

[12]  F. P. Vasil’ev,et al.  Extraproximal method for solving two-person saddle-point games , 2011 .

[13]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[14]  L. M. Chabak,et al.  Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators , 2015 .

[15]  A. Iusem,et al.  On the proximal point method for equilibrium problems in Hilbert spaces , 2010 .

[16]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[17]  A. S. Stukalov An extraproximal method for solving equilibrium programming problems in a Hilbert space , 2006 .

[18]  T. D. Quoc,et al.  Extragradient algorithms extended to equilibrium problems , 2008 .

[19]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[20]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[21]  Anatoly Antipin,et al.  Multicriteria equilibrium programming: Extraproximal methods , 2007 .

[22]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[23]  P. Pardalos,et al.  Equilibrium problems : nonsmooth optimization and variational inequality models , 2004 .

[24]  S. I. Lyashko,et al.  Low-cost modification of Korpelevich’s methods for monotone equilibrium problems , 2011 .

[25]  Yu. V. Malitsky,et al.  An Extragradient Algorithm for Monotone Variational Inequalities , 2014 .

[26]  A. Antipin Extraproximal approach to calculating equilibriums in pure exchange models , 2006 .

[27]  Wataru Takahashi,et al.  Weak Convergence Theorem by an Extragradient Method for Nonexpansive Mappings and Monotone Mappings , 2006 .

[28]  L. Popov A modification of the Arrow-Hurwicz method for search of saddle points , 1980 .

[29]  A. Antipin EQUILIBRIUM PROGRAMMING : GRADIENT METHODS , 1997 .

[30]  V. Semenov On the Parallel Proximal Decomposition Method for Solving the Problems of Convex Optimization , 2010 .

[31]  F. P. Vasil’ev,et al.  Multicriteria equilibrium programming: Extragradient method , 2010 .

[32]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[33]  Yu. V. Malitsky,et al.  A hybrid method without extrapolation step for solving variational inequality problems , 2015, J. Glob. Optim..

[34]  I. Konnov Application of the Proximal Point Method to Nonmonotone Equilibrium Problems , 2003 .

[35]  P. N. Anh Strong Convergence Theorems for Nonexpansive Mappings and Ky Fan Inequalities , 2012, J. Optim. Theory Appl..

[36]  V. Semenov,et al.  Hybrid Splitting Methods for the System of Operator Inclusions with Monotone Operators1 , 2014, Cybernetics and Systems Analysis.

[37]  E. Khobotov Modification of the extra-gradient method for solving variational inequalities and certain optimization problems , 1989 .

[38]  Anatoly Antipin,et al.  Equilibrium programming : Proximal methods , 1997 .

[39]  Anatoly Antipin,et al.  A regularized extragradient method for solving equilibrium programming problems , 2003 .