Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics.

[1]  Rohit Bhargava,et al.  Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors , 2014 .

[2]  Benjamin E. Gaddy,et al.  Vacancy compensation and related donor-acceptor pair recombination in bulk AlN , 2013 .

[3]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[4]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[5]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[6]  Daniel Wasserman,et al.  Epitaxial growth of engineered metals for mid-infrared plasmonics , 2013 .

[7]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[8]  Mark D. Losego,et al.  Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films , 2013 .

[9]  Daniel Wasserman,et al.  Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics , 2013 .

[10]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[11]  D. Wasserman,et al.  Mid-infrared designer metals , 2012, IEEE Photonics Conference 2012.

[12]  D. Milliron,et al.  Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory , 2012 .

[13]  D. Scanlon,et al.  Sources of conductivity and doping limits in CdO from hybrid density functional theory. , 2011, Journal of the American Chemical Society.

[14]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[15]  Jörg Neugebauer,et al.  Electrostatic interactions between charged defects in supercells , 2011 .

[16]  Patrick E. Hopkins,et al.  Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces , 2010 .

[17]  S. Kearney,et al.  Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating , 2010 .

[18]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[19]  J. Maria,et al.  Conductive oxide thin films: Model systems for understanding and controlling surface plasmon resonance , 2009 .

[20]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[21]  Hans Peter Herzig,et al.  Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range. , 2009, Optics express.

[22]  Gang Chen,et al.  Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. , 2008, The Review of scientific instruments.

[23]  Pierre Berini,et al.  Figures of merit for 2D surface plasmon waveguides and application to metal stripes. , 2007, Optics express.

[24]  Pierre Berini,et al.  Figures of merit for surface plasmon waveguides. , 2006, Optics express.

[25]  Mark D. Losego,et al.  Surface plasmon resonance in conducting metal oxides , 2006 .

[26]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[27]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[28]  Subhadra Gupta,et al.  Super-smooth indium–tin oxide thin films by negative sputter ion beam technology , 2003 .

[29]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[30]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[31]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[32]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[33]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[34]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[35]  Thomsen,et al.  Surface generation and detection of phonons by picosecond light pulses. , 1986, Physical review. B, Condensed matter.

[36]  Zeev Valy Vardeny,et al.  Coherent Phonon Generation and Detection by Picosecond Light Pulses , 1984 .

[37]  George C. Schatz,et al.  Plasmon resonance broadening in small metal particles , 1983 .

[38]  B. Ridley,et al.  Reconciliation of the Conwell-Weisskopf and Brooks-Herring formulae for charged-impurity scattering in semiconductors: Third-body interference , 1977 .

[39]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[40]  L. Kazmerski,et al.  Growth, environmental, and electrical properties of ultrathin metal films , 1975 .

[41]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[42]  F. P. Koffyberg Carrier concentration in oxygen deficient CdO single crystals , 1969 .

[43]  G. A. Slack,et al.  Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .

[44]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .

[45]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .