Local control of interval tension using weighted splines
暂无分享,去创建一个
[1] Thomas A. Foley,et al. Weighted bicubic spline interpolation to rapidly varying data , 1987, TOGS.
[2] I. Faux,et al. Computational Geometry for Design and Manufacture , 1979 .
[3] G. Farin. Visually C2 cubic splines , 1982 .
[4] Richard H. Bartels,et al. Interpolating splines with local tension, continuity, and bias control , 1984, SIGGRAPH.
[5] Wolfgang Böhm. Curvature continuous curves and surfaces , 1985, Comput. Aided Geom. Des..
[6] Brian A. Barsky. Exponential and polynomial methods for applying tension to an interpolating spline curve , 1984, Comput. Vis. Graph. Image Process..
[7] Brian A. Barsky,et al. Local Control of Bias and Tension in Beta-splines , 1983, TOGS.
[8] K. Salkauskas. $C^1$ >splines for interpolation of rapidly varying data , 1984 .
[9] W. J. Gordon,et al. B-SPLINE CURVES AND SURFACES , 1974 .
[10] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[11] Tom Lyche,et al. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .
[12] Wolfgang Böhm,et al. A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..
[13] G. Nielson. SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .
[14] B. Barsky. The beta-spline: a local representation based on shape parameters and fundamental geometric measures , 1981 .
[15] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[16] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[17] Thomas A. Foley,et al. Interpolation with interval and point tension controls using cubic weighted v-splines , 1987, TOMS.
[18] Samuel D. Conte,et al. Elementary Numerical Analysis , 1980 .
[19] Gerald E. Farin. Some remarks on V2-splines , 1985, Comput. Aided Geom. Des..