Freestanding Perovskite Oxide Films: Synthesis, Challenges, and Properties

In this review paper, recent progress in the fabrication, transfer, and fundamental physical properties of freestanding oxide perovskite thin films is discussed. First, the main strategies for the synthesis and transfer of freestanding perovskite thin films are analyzed. In this initial section, particular attention is devoted to the use of water‐soluble (Ca,Sr,Ba)3Al2O6 thin films as sacrificial layers, one of the most promising techniques for the fabrication of perovskite membranes. The main functionalities that have been observed in freestanding perovskite thin films are then reviewed. In doing so, the authors begin by describing the emergence of new phenomena in ultrathin perovskite membranes when released from the substrate. They then move on to a summary of the functional properties that are observed in freestanding perovskite membranes under the application of strain. Indeed, freestanding thin films offer the unique possibility to actively control the strain state far beyond what can be observed with traditional methods, allowing the investigation of the profound interplay between structural and electronic properties in oxides. Overall, this review highlights the potential of oxide‐based freestanding thin films to become the preferred platform for the study of novel functionalities in perovskite oxide materials.

[1]  Run‐Wei Li,et al.  Cooperative control of perpendicular magnetic anisotropy via crystal structure and orientation in freestanding SrRuO3 membranes , 2021, npj Flexible Electronics.

[2]  Ming Liu,et al.  Epitaxial lift-off of flexible single-crystal magnetite thin films with tunable magnetic performances by mechanical deformation , 2021 .

[3]  Jiangyu Li,et al.  Highly Flexible Freestanding BaTiO3 -CoFe2 O4 Heteroepitaxial Nanostructure Self-Assembled with Room-Temperature Multiferroicity. , 2021, Small.

[4]  Ming Liu,et al.  2–2 Type PVDF‐Based Composites Interlayered by Epitaxial (111)‐Oriented BTO Films for High Energy Storage Density , 2021, Advanced Functional Materials.

[5]  Bingqiang Cao,et al.  Strain-controlled Electrical Transport Performance of Epitaxial LaNiO3 films with Sr3Al2O6 Buffer Layer , 2021, Chemical Physics Letters.

[6]  S. Bakaul Electrical characterization of freestanding complex oxide ferroelectrics: Artifacts and experimental precautions , 2021, AIP Advances.

[7]  Lang Chen,et al.  Super‐Flexible Freestanding BiMnO3 Membranes with Stable Ferroelectricity and Ferromagnetism , 2021, Advanced science.

[8]  Xingyu Jiang,et al.  Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface , 2021, Advanced materials.

[9]  Qi Zhang,et al.  Freestanding Ferroelectric Bubble Domains , 2021, Advanced materials.

[10]  Jianhui Zhao,et al.  Flexible artificial synapse based on single-crystalline BiFeO3 thin film , 2021, Nano Research.

[11]  H. Hwang,et al.  Fracture and fatigue of thin crystalline SrTiO3 membranes , 2021, Applied Physics Letters.

[12]  J. E. ten Elshof,et al.  Epitaxial lift-off of freestanding (011) and (111) SrRuO3 thin films using a water sacrificial layer , 2021, Scientific Reports.

[13]  Zhuoyu Chen,et al.  Stabilization of Sr3Al2O6 Growth Templates for Ex Situ Synthesis of Freestanding Crystalline Oxide Membranes. , 2021, Nano letters.

[14]  J. Levy,et al.  Electronically reconfigurable complex oxide heterostructure freestanding membranes , 2021, Science Advances.

[15]  A. Sambri,et al.  Size-Controlled Spalling of LaAlO3/SrTiO3 Micromembranes. , 2021, ACS applied materials & interfaces.

[16]  Zhuangde Jiang,et al.  Ultraflexible and Malleable Fe/BaTiO3 Multiferroic Heterostructures for Functional Devices , 2021, Advanced Functional Materials.

[17]  J. MacManus‐Driscoll,et al.  High Yield Transfer of Clean Large-Area Epitaxial Oxide Thin Films , 2021, Nano-micro letters.

[18]  H. Hwang,et al.  Strain Gradient Elasticity in SrTiO3 Membranes: Bending versus Stretching. , 2020, Nano letters.

[19]  Lang Chen,et al.  Exchange bias in flexible freestanding La0.7Sr0.3MnO3/BiFeO3 membranes , 2020 .

[20]  H. Hwang,et al.  Beyond Substrates: Strain Engineering of Ferroelectric Membranes , 2020, Advanced materials.

[21]  M. Scuderi,et al.  Self‐Formed, Conducting LaAlO3/SrTiO3 Micro‐Membranes , 2020, Advanced Functional Materials.

[22]  S. Koester,et al.  Bandgap engineering of two-dimensional semiconductor materials , 2020, npj 2D Materials and Applications.

[23]  Ming Liu,et al.  Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes , 2020, Science Advances.

[24]  Jong-Woo Kim,et al.  Nanometer-Thick Sr2IrO4 Freestanding Films for Flexible Electronics , 2020 .

[25]  Di Wu,et al.  Preparation and characterization of a flexible ferroelectric tunnel junction , 2020, Applied Physics Letters.

[26]  S. Haigh,et al.  Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off , 2020, Nature Communications.

[27]  Jiangyu Li,et al.  Highly Flexible and Twistable Freestanding Single Crystalline Magnetite Film with Robust Magnetism , 2020, Advanced Functional Materials.

[28]  A. Chikamatsu,et al.  Simple Method to Obtain Large‐Size Single‐Crystalline Oxide Sheets , 2020, Advanced Functional Materials.

[29]  L. You,et al.  Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect , 2020, Nature Communications.

[30]  H. Hwang,et al.  Strain-induced room-temperature ferroelectricity in SrTiO3 membranes , 2020, Nature Communications.

[31]  Run‐Wei Li,et al.  Synthesis of single-crystal La0.67Sr0.33MnO3 freestanding films with different crystal-orientation , 2020, APL Materials.

[32]  H. Hwang,et al.  Extreme tensile strain states in La0.7Ca0.3MnO3 membranes , 2020, Science.

[33]  Y. Zang,et al.  Giant Uniaxial Strain Ferroelectric Domain Tuning in Freestanding PbTiO3 Films , 2020, Advanced Materials Interfaces.

[34]  Peng Wang,et al.  Epitaxial optimization of atomically smooth Sr3Al2O6 for freestanding perovskite films by molecular beam epitaxy , 2020 .

[35]  Noy Cohen,et al.  Giant Superelastic Piezoelectricity in Flexible Ferroelectric BaTiO3 Membranes. , 2020, ACS nano.

[36]  Sang-Hoon Bae,et al.  Heterogeneous integration of single-crystalline complex-oxide membranes , 2020, Nature.

[37]  J. Park,et al.  Non-Ohmic conduction in exfoliated La0.7Ca0.3MnO3 thin films , 2020 .

[38]  P. Steeneken,et al.  Ultrathin complex oxide nanomechanical resonators , 2019, Communications Physics.

[39]  M. Holt,et al.  Ferroelectric Domain Wall Motion in Freestanding Single‐Crystal Complex Oxide Thin Film , 2019, Advanced materials.

[40]  C. Nan,et al.  Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation , 2019, Science.

[41]  N. Pryds,et al.  Stimulating Oxide Heterostructures: A Review on Controlling SrTiO3‐Based Heterointerfaces with External Stimuli , 2019, Advanced Materials Interfaces.

[42]  N. Pryds,et al.  Functional Oxide Thin Films for Advanced Energy and Information Technology , 2019, Advanced Materials Interfaces.

[43]  Pablo Sanchis,et al.  Towards Oxide Electronics: a Roadmap , 2019, Applied Surface Science.

[44]  Chunrui Ma,et al.  Integration of Both Invariable and Tunable Microwave Magnetisms in a Single Flexible La0.67Sr0.33MnO3 Thin Film. , 2019, ACS applied materials & interfaces.

[45]  H. Hwang,et al.  Large-Area Crystalline BaSnO3 Membranes with High Electron Mobilities , 2019, ACS Applied Electronic Materials.

[46]  M. Alexe,et al.  Flexible memristors based on single-crystalline ferroelectric tunnel junctions. , 2019, ACS applied materials & interfaces.

[47]  E. Tsymbal,et al.  Freestanding crystalline oxide perovskites down to the monolayer limit , 2019, Nature.

[48]  H. Hwang,et al.  Freestanding Oxide Ferroelectric Tunnel Junction Memories Transferred onto Silicon. , 2019, Nano letters.

[49]  L. Fu,et al.  Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. , 2018, Chemical reviews.

[50]  Yi Cui,et al.  Two-dimensional limit of crystalline order in perovskite membrane films , 2017, Science Advances.

[51]  L. Kourkoutis,et al.  Mapping cation diffusion through lattice defects in epitaxial oxide thin films on the water-soluble buffer layer Sr3Al2O6 using atomic resolution electron microscopy , 2017 .

[52]  Meilin Liu,et al.  Epitaxial Lift‐Off of Centimeter‐Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics , 2017, Advanced materials.

[53]  Jian Luo,et al.  The role of ceramic and glass science research in meeting societal challenges: Report from an NSF-sponsored workshop , 2017 .

[54]  R. Maboudian,et al.  High Speed Epitaxial Perovskite Memory on Flexible Substrates , 2017, Advanced materials.

[55]  L. Kourkoutis,et al.  Ultrathin Epitaxial Barrier Layer to Avoid Thermally Induced Phase Transformation in Oxide Heterostructures. , 2017, ACS applied materials & interfaces.

[56]  L. Kourkoutis,et al.  Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. , 2016, Nature materials.

[57]  Asif Islam Khan,et al.  Single crystal functional oxides on silicon , 2015, Nature Communications.

[58]  Yanjing Su,et al.  Water adsorption induced in-plane domain switching on BaTiO3 surface , 2015 .

[59]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[60]  S. Chambers Understanding the mechanism of conductivity at the LaAlO3/SrTiO3(001) interface , 2011 .

[61]  Sergei V. Kalinin,et al.  Atomistic screening mechanism of ferroelectric surfaces: an in situ study of the polar phase in ultrathin BaTiO3 films exposed to H2O. , 2009, Nano letters.

[62]  William S. Wong,et al.  Damage-free separation of GaN thin films from sapphire substrates , 1998 .

[63]  J. Soubeyroux,et al.  Tristrontium dialuminum hexaoxide: an intricate superstructure of perovskite , 1990 .

[64]  A. S.,et al.  Lehrbuch der Anorganischen Chemie , 1900, Nature.

[65]  R. Chandrashekhar Chambers , 1866, Hall's Journal of Health.