Activation of the Retroviral Budding Factor ALIX

ABSTRACT The cellular ALIX protein functions within the ESCRT pathway to facilitate intralumenal endosomal vesicle formation, the abscission stage of cytokinesis, and enveloped virus budding. Here, we report that the C-terminal proline-rich region (PRR) of ALIX folds back against the upstream domains and auto-inhibits V domain binding to viral late domains. Mutations designed to destabilize the closed conformation of the V domain opened the V domain, increased ALIX membrane association, and enhanced virus budding. These observations support a model in which ALIX activation requires dissociation of the autoinhibitory PRR and opening of the V domain arms.

[1]  Elmer S. West From the U. S. A. , 1965 .

[2]  I. Dikic,et al.  Src Phosphorylation of Alix/AIP1 Modulates Its Interaction with Binding Partners and Antagonizes Its Activities* , 2005, Journal of Biological Chemistry.

[3]  Alexander Bergmann,et al.  Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA) , 2000 .

[4]  Alexander Bergmann,et al.  SAXS experiments on absolute scale with Kratky systems using water as a secondary standard , 2000 .

[5]  K. Nagashima,et al.  Structural basis for viral late-domain binding to Alix , 2007, Nature Structural &Molecular Biology.

[6]  A. Nichols,et al.  Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein , 1999, Cell Death and Differentiation.

[7]  R. D. Fisher,et al.  ALIX-CHMP4 interactions in the human ESCRT pathway , 2008, Proceedings of the National Academy of Sciences.

[8]  R. D. Fisher,et al.  Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV , 2008, Nature Structural &Molecular Biology.

[9]  K. Nagashima,et al.  Functional Replacement of a Retroviral Late Domain by Ubiquitin Fusion , 2008, Traffic.

[10]  Norbert Bannert,et al.  Exploring the functional interaction between POSH and ALIX and the relevance to HIV-1 release , 2009, BMC Biochemistry.

[11]  K. Nagashima,et al.  An Alix Fragment Potently Inhibits HIV-1 Budding , 2006, Journal of Biological Chemistry.

[12]  U. Schubert,et al.  The trans-Golgi network-associated human ubiquitin-protein ligase POSH is essential for HIV type 1 production. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Freed,et al.  Binding of Human Immunodeficiency Virus Type 1 Gag to Membrane: Role of the Matrix Amino Terminus , 1999, Journal of Virology.

[14]  J. Corbeil,et al.  Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X. , 2010, The Biochemical journal.

[15]  R. D. Fisher,et al.  Structural and Biochemical Studies of ALIX/AIP1 and Its Role in Retrovirus Budding , 2007, Cell.

[16]  Sue-Hwa Lin,et al.  The HIV-1 p6/EIAV p9 docking site in Alix is autoinhibited as revealed by a conformation-sensitive anti-Alix monoclonal antibody. , 2008, The Biochemical journal.

[17]  J. Hurley,et al.  Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1 , 2007, Nature Reviews Microbiology.

[18]  T. Aigaki,et al.  POSH, a scaffold protein for JNK signaling, binds to ALG‐2 and ALIX in Drosophila , 2006, FEBS letters.

[19]  S. Lata,et al.  Structural basis for autoinhibition of ESCRT-III CHMP3. , 2008, Journal of molecular biology.

[20]  W. Sundquist,et al.  The Protein Network of HIV Budding , 2003, Cell.

[21]  Xiaoping Zhou,et al.  Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. , 2010, The Biochemical journal.

[22]  Sue-Hwa Lin,et al.  The CHMP4b- and Src-docking sites in the Bro1 domain are autoinhibited in the native state of Alix. , 2009, The Biochemical journal.

[23]  D. Pérez-Caballero,et al.  Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Bieniasz,et al.  HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress , 2001, Nature Medicine.

[25]  Zhaohui Xu,et al.  Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis. , 2009, Molecular biology of the cell.

[26]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[27]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[28]  P. Bieniasz The cell biology of HIV-1 virion genesis. , 2009, Cell host & microbe.

[29]  J. Hurley,et al.  Membrane budding and scission by the ESCRT machinery: it's all in the neck , 2010, Nature Reviews Molecular Cell Biology.

[30]  P. Hanson,et al.  Interaction of the Mammalian Endosomal Sorting Complex Required for Transport (ESCRT) III Protein hSnf7-1 with Itself, Membranes, and the AAA+ ATPase SKD1* , 2005, Journal of Biological Chemistry.

[31]  W. Sundquist,et al.  Structural Basis for ESCRT-III Protein Autoinhibition , 2009, Nature Structural &Molecular Biology.

[32]  D. I. Svergun,et al.  A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. , 2009, Structure.

[33]  Mirko H. H. Schmidt,et al.  SETA/CIN85/Ruk and its binding partner AIP1 associate with diverse cytoskeletal elements, including FAKs, and modulate cell adhesion , 2003, Journal of Cell Science.

[34]  W. Sundquist,et al.  Identification and Structural Characterization of the ALIX-Binding Late Domains of Simian Immunodeficiency Virus SIVmac239 and SIVagmTan-1 , 2010, Journal of Virology.

[35]  W. Weissenhorn,et al.  Divergent pathways lead to ESCRT-III-catalyzed membrane fission. , 2011, Trends in biochemical sciences.

[36]  Jill Trewhella,et al.  Small-angle X-ray scattering reveals the N-terminal domain organization of cardiac myosin binding protein C. , 2008, Journal of molecular biology.

[37]  W. Weissenhorn,et al.  The ESCRT pathway and HIV-1 budding. , 2009, Biochemical Society transactions.

[38]  A. Calistri,et al.  AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding , 2003, Cell.

[39]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[40]  S. Gygi,et al.  Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis , 2007, The EMBO journal.

[41]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[42]  L. Pellegrini,et al.  Cloning of AIP1, a Novel Protein That Associates with the Apoptosis-linked Gene ALG-2 in a Ca2+-dependent Reaction* , 1999, The Journal of Biological Chemistry.

[43]  G. Odorizzi The multiple personalities of Alix , 2006, Journal of Cell Science.

[44]  L. Verplank,et al.  Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Freed,et al.  Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Emr,et al.  ESCRT‐II coordinates the assembly of ESCRT‐III filaments for cargo sorting and multivesicular body vesicle formation , 2010, The EMBO journal.

[47]  H. Göttlinger,et al.  Potent Rescue of Human Immunodeficiency Virus Type 1 Late Domain Mutants by ALIX/AIP1 Depends on Its CHMP4 Binding Site , 2007, Journal of Virology.

[48]  J. Hurley,et al.  Structural basis for endosomal targeting by the Bro1 domain. , 2005, Developmental cell.

[49]  J. Martin-Serrano,et al.  Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release , 2008, Proceedings of the National Academy of Sciences.