Remarks on the KLS conjecture and Hardy-type inequalities
暂无分享,去创建一个
[1] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[2] H. Knothe. Contributions to the theory of convex bodies. , 1957 .
[3] A. W. Marshall,et al. Properties of Probability Distributions with Monotone Hazard Rate , 1963 .
[4] G. Folland. Introduction to Partial Differential Equations , 1976 .
[5] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[6] K. Ball. Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .
[7] V. Milman,et al. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .
[8] Keith Ball,et al. Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.
[9] L. Caffarelli. Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .
[10] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[11] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[12] L. Caffarelli. Boundary regularity of maps with convex potentials , 1992 .
[13] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..
[14] Matthieu Fradelizi,et al. Sections of convex bodies through their centroid , 1997 .
[15] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[16] J. Zinn,et al. Concentration on the ℓpn ball , 2000 .
[17] M. Ledoux. The concentration of measure phenomenon , 2001 .
[18] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[19] B. Klartag,et al. On volume distribution in 2-convex bodies , 2006, math/0604594.
[20] B. Klartag. On convex perturbations with a bounded isotropic constant , 2006 .
[21] R. Benguria,et al. Isoperimetric Inequalities for Eigenvalues of the Laplacian , 2007 .
[22] E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration , 2007, 0712.4092.
[23] FROM THE BRUNN–MINKOWSKI INEQUALITY TO A CLASS OF POINCARÉ-TYPE INEQUALITIES , 2007, math/0703584.
[24] S. Sodin,et al. An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies , 2007, math/0703857.
[25] R. Latala,et al. On the infimum convolution inequality , 2008, 0801.4036.
[26] S. Sodin. An isoperimetric inequality on the ℓp balls , 2006, math/0607398.
[27] O. Guédon,et al. Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.
[28] A. Figalli. QUANTITATIVE ISOPERIMETRIC INEQUALITIES , WITH APPLICATIONS TO THE STABILITY OF LIQUID DROPS AND CRYSTALS , 2010 .
[29] G. Paouris. Small ball probability estimates for log-concave measures , 2012 .
[30] Ronen Eldan,et al. Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Localization Scheme , 2012, 1203.0893.
[31] N. Ghoussoub,et al. Functional Inequalities: New Perspectives and New Applications , 2012, 1201.2976.
[32] Kolesnikov Alexander,et al. Poincaré and Brunn-Minkowski inequalities on weighted Riemannian manifolds with boundary , 2014 .
[33] Patrick Cattiaux,et al. Functional inequalities via Lyapunov conditions , 2010, Optimal Transport.