Remarks on the KLS conjecture and Hardy-type inequalities

We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary functions on a convex body \(\varOmega \subset \mathbb{R}^{n}\), not necessarily vanishing on the boundary ∂ Ω. This reduces the study of the Neumann Poincare constant on Ω to that of the cone and Lebesgue measures on ∂ Ω; these may be bounded via the curvature of ∂ Ω. A second reduction is obtained to the class of harmonic functions on Ω. We also study the relation between the Poincare constant of a log-concave measure μ and its associated K. Ball body K μ . In particular, we obtain a simple proof of a conjecture of Kannan–Lovasz–Simonovits for unit-balls of l p n , originally due to Sodin and Latala–Wojtaszczyk.

[1]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[2]  H. Knothe Contributions to the theory of convex bodies. , 1957 .

[3]  A. W. Marshall,et al.  Properties of Probability Distributions with Monotone Hazard Rate , 1963 .

[4]  G. Folland Introduction to Partial Differential Equations , 1976 .

[5]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[6]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[7]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[8]  Keith Ball,et al.  Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.

[9]  L. Caffarelli Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .

[10]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[11]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[12]  L. Caffarelli Boundary regularity of maps with convex potentials , 1992 .

[13]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[14]  Matthieu Fradelizi,et al.  Sections of convex bodies through their centroid , 1997 .

[15]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[16]  J. Zinn,et al.  Concentration on the ℓpn ball , 2000 .

[17]  M. Ledoux The concentration of measure phenomenon , 2001 .

[18]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[19]  B. Klartag,et al.  On volume distribution in 2-convex bodies , 2006, math/0604594.

[20]  B. Klartag On convex perturbations with a bounded isotropic constant , 2006 .

[21]  R. Benguria,et al.  Isoperimetric Inequalities for Eigenvalues of the Laplacian , 2007 .

[22]  E. Milman On the role of convexity in isoperimetry, spectral gap and concentration , 2007, 0712.4092.

[23]  FROM THE BRUNN–MINKOWSKI INEQUALITY TO A CLASS OF POINCARÉ-TYPE INEQUALITIES , 2007, math/0703584.

[24]  S. Sodin,et al.  An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies , 2007, math/0703857.

[25]  R. Latala,et al.  On the infimum convolution inequality , 2008, 0801.4036.

[26]  S. Sodin An isoperimetric inequality on the ℓp balls , 2006, math/0607398.

[27]  O. Guédon,et al.  Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.

[28]  A. Figalli QUANTITATIVE ISOPERIMETRIC INEQUALITIES , WITH APPLICATIONS TO THE STABILITY OF LIQUID DROPS AND CRYSTALS , 2010 .

[29]  G. Paouris Small ball probability estimates for log-concave measures , 2012 .

[30]  Ronen Eldan,et al.  Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Localization Scheme , 2012, 1203.0893.

[31]  N. Ghoussoub,et al.  Functional Inequalities: New Perspectives and New Applications , 2012, 1201.2976.

[32]  Kolesnikov Alexander,et al.  Poincaré and Brunn-Minkowski inequalities on weighted Riemannian manifolds with boundary , 2014 .

[33]  Patrick Cattiaux,et al.  Functional inequalities via Lyapunov conditions , 2010, Optimal Transport.