A Data-Driven Line Search Rule for Support Recovery in High-dimensional Data Analysis

In this work, we consider the algorithm to the (nonlinear) regression problems with `0 penalty. The existing algorithms for `0 based optimization problem are often carried out with a fixed step size, and the selection of an appropriate step size depends on the restricted strong convexity and smoothness for the loss function, hence it is difficult to compute in practical calculation. In sprite of the ideas of support detection and root finding Huang et al. (2021), we proposes a novel and efficient data-driven line search rule to adaptively determine the appropriate step size. We prove the `2 error bound to the proposed algorithm without much restrictions for the cost functional. A large number of numerical comparisons with state-of-the-art algorithms in linear and logistic regression problems show the stability, effectiveness and superiority of the proposed algorithms.

[1]  K. Lange,et al.  Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.

[2]  Martin Jaggi,et al.  Sparse Convex Optimization Methods for Machine Learning , 2011 .

[3]  Volker Roth,et al.  The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms , 2008, ICML '08.

[4]  D. Sengupta Linear models , 2003 .

[5]  Ping Li,et al.  On the Iteration Complexity of Support Recovery via Hard Thresholding Pursuit , 2017, ICML.

[6]  Jinghui Chen,et al.  Fast Newton Hard Thresholding Pursuit for Sparsity Constrained Nonconvex Optimization , 2017, KDD.

[7]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[8]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[9]  Yuling Jiao,et al.  GSDAR: a fast Newton algorithm for ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _0$$\end{document} regulariz , 2021, Computational Statistics.

[10]  O. SIAMJ.,et al.  SMOOTH OPTIMIZATION APPROACH FOR SPARSE COVARIANCE SELECTION∗ , 2009 .

[11]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[12]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[13]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[14]  Yuling Jiao,et al.  A Primal Dual Active Set Algorithm With Continuation for Compressed Sensing , 2013, IEEE Transactions on Signal Processing.

[15]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[16]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[17]  Martin J. Wainwright,et al.  Fast global convergence of gradient methods for high-dimensional statistical recovery , 2011, ArXiv.

[18]  Zehua Chen,et al.  Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space , 2014 .

[19]  Bhiksha Raj,et al.  Greedy sparsity-constrained optimization , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[20]  Shenglong Zhou,et al.  Newton method for ℓ0-regularized optimization , 2020, Numerical Algorithms.

[21]  Jian Huang,et al.  COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION. , 2011, The annals of applied statistics.

[22]  D. Lorenz,et al.  Elastic-net regularization: error estimates and active set methods , 2009, 0905.0796.

[23]  Yunhai Xiao,et al.  An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation , 2018, Comput. Stat. Data Anal..

[24]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[25]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[26]  Jin Liu,et al.  A Unified Primal Dual Active Set Algorithm for Nonconvex Sparse Recovery , 2013 .

[27]  G. A. Young,et al.  High‐dimensional Statistics: A Non‐asymptotic Viewpoint, Martin J.Wainwright, Cambridge University Press, 2019, xvii 552 pages, £57.99, hardback ISBN: 978‐1‐1084‐9802‐9 , 2020, International Statistical Review.

[28]  Runze Li,et al.  CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION. , 2013, Annals of statistics.

[29]  S. Geer HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS AND THE LASSO , 2008, 0804.0703.

[30]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[31]  Qingshan Liu,et al.  Newton-Type Greedy Selection Methods for $\ell _0$ -Constrained Minimization , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Tong Zhang,et al.  Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models , 2008, NIPS.

[33]  Tong Zhang,et al.  Gradient Hard Thresholding Pursuit , 2018, J. Mach. Learn. Res..

[34]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[35]  Mila Nikolova,et al.  Description of the Minimizers of Least Squares Regularized with 퓁0-norm. Uniqueness of the Global Minimizer , 2013, SIAM J. Imaging Sci..

[36]  Xiao-Tong Yuan,et al.  Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization , 2013, ICML.

[37]  Lin Xiao,et al.  A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem , 2012, SIAM J. Optim..

[38]  Shenglong Zhou,et al.  Fast Newton Method for Sparse Logistic Regression , 2019, 1901.02768.

[39]  Mee Young Park,et al.  L 1-regularization path algorithm for generalized linear models , 2006 .

[40]  Bangti Jin,et al.  A Primal Dual Active Set with Continuation Algorithm for the \ell^0-Regularized Optimization Problem , 2014, ArXiv.

[41]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[42]  HuangJian,et al.  A constructive approach to L0 penalized regression , 2018 .

[43]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[44]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.