PdZn or ZnPd: Charge Transfer and Pd–Pd Bonding as the Driving Force for the Tetragonal Distortion of the Cubic Crystal Structure
暂无分享,去创建一个
[1] R. Schlögl,et al. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions , 2008 .
[2] Robert Schlögl,et al. Palladium Gallium Intermetallic Compounds for the Selective Hydrogenation of Acetylene Part II: Surface Characterization and Catalytic Performance , 2008 .
[3] M. Armbrüster,et al. Chemical bonding in TiSb(2) and VSb(2): a quantum chemical and experimental study. , 2007, Inorganic chemistry.
[4] Y. Grin,et al. Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. , 2007, Chemistry.
[5] Konstantin M. Neyman,et al. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. , 2007, Physical chemistry chemical physics : PCCP.
[6] R. Schlögl,et al. A new approach to well-defined, stable and site-isolated catalysts , 2007 .
[7] Y. Grin,et al. Electron localization function in full-potential representation for crystalline materials. , 2006, The journal of physical chemistry. A.
[8] A. Tsai,et al. PdZn=Cu: Can an Intermetallic Compound Replace an Element? , 2004 .
[9] Miroslav Kohout,et al. Electron localization function for transition-metal compounds , 2002 .
[10] Helmut Eschrig,et al. FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .
[11] N. Iwasa,et al. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals , 1997 .
[12] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[13] B. Predel,et al. Experimentelle Untersuchungen zur Struktur und Stabilität der Phase TiAl , 1995 .
[14] A. Zunger,et al. Comparison of experimental and theoretical electronic charge distribution in γ-TiAl , 1994 .
[15] Wang,et al. Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.
[16] 間庭 秀世,et al. Max Hansen and Kurt Anderko: Constitution of Binary Alloys. McGraw-Hill Book Co., New York, 1958, 1305頁, 23×16cm, \13.000. , 1958 .
[17] H. Nowotny,et al. Ein Beitrag zum System Palladium-Zink , 1951 .
[18] H. Nowotny,et al. Die Kristallstruktur von PdZn , 1950 .
[19] U. Dehlinger. Zur Verformungsempfindlichkeit der metallischen Überstrukturen , 1937 .
[20] Y. Grin,et al. Spatial chemistry of the aluminium—platinum compounds: a quantum chemical approach , 2007 .
[21] Y. Grin,et al. Atomic Shells From the Electron Localizability in Momentum Space , 2006 .
[22] Miroslav Kohout,et al. A Measure of Electron Localizability , 2004 .
[23] S. Ambler,et al. THE ELEMENTS , 1998 .
[24] R. Bader. Atoms in molecules : a quantum theory , 1990 .
[25] W. K. Wang,et al. Isothermal compression of the L10-type alloy CuAu , 1987 .
[26] Lawrence H. Bennett,et al. Binary alloy phase diagrams , 1986 .
[27] H. Ipser,et al. The structural stability of the B2 and L10 phases in the system PdZn , 1978 .
[28] T. S. Rao,et al. Temperature and composition dependence of the elastic moduli of NiZn ferrites , 1978 .
[29] C. H. Johansson,et al. Röntgenographische Bestimmung der Atomanordnung in den Mischkristallreihen AuCu und PdCu , 1925 .