Spatial Scale of Population Synchrony: Environmental Correlation versus Dispersal and Density Regulation

A stochastic model is developed to analyze the equilibrium spatial pattern of population synchrony, the correlation of temporal fluctuations in population density between localities. The expected population dynamics and the distribution of individual dispersal distance are homogeneous in space. Environmental stochasticity is caused by temporal fluctuations in the intrinsic rate of increase and/or carrying capacity of local populations that are correlated in space (but not time), the environmental correlation decreasing with distance. We analyze a linearized model for small fluctuations. Employing the standard deviation of a function in a given direction as a measure of scale, the spatial scale of population synchrony, lρ, is related to the spatial scales of environmental correlation, le, and individual dispersal, l, by the simple general formula \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$l^{2}_{\rho }=l^{2}_{e}+ml^{2}/ \gamma $$ \end{document} , where m is the individual dispersal rate and γ is the strength of population density regulation (or rate of return to equilibrium, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$\overline{r}$$ \end{document} in the logistic model). Relative to environmental correlation (the Moran effect), the contribution of individual dispersal to the spatial scale of synchrony is magnified by the ratio of the individual dispersal rate to the strength of density regulation. Thus, even if the scale of individual dispersal is smaller than that of environmental correlation, dispersal can substantially increase the scale of population synchrony for weakly regulated populations.

[1]  P. A. P. Moran,et al.  The statistical analysis of the Canadian Lynx cycle. , 1953 .

[2]  Cleve Moler,et al.  Mathematical Handbook for Scientists and Engineers , 1961 .

[3]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[4]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[5]  G. R. Fraser,et al.  The mathematics of heredity , 1971 .

[6]  Jonathan Roughgarden,et al.  A Simple Model for Population Dynamics in Stochastic Environments , 1975, The American Naturalist.

[7]  Robert M. May,et al.  Patterns of Dynamical Behaviour in Single-Species Populations , 1976 .

[8]  R M May,et al.  Harvesting Natural Populations in a Randomly Fluctuating Environment , 1977, Science.

[9]  J. D. Rougharden Patchiness in the Spatial Distribution of a Population Caused by Stochastic Fluctuations in Resources , 1977 .

[10]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[11]  W. Gurney,et al.  Modelling fluctuating populations , 1982 .

[12]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[13]  I. Hanski Density Dependence, Regulation and Variability in Animal Populations , 1990 .

[14]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[15]  C. Krebs The balance of nature? Ecological issues in the conservation of species and communities , 1992 .

[16]  Ian P. Woiwod,et al.  Spatial synchrony in the dynamics of moth and aphid populations , 1993 .

[17]  W. Schaffer,et al.  Chaos reduces species extinction by amplifying local population noise , 1993, Nature.

[18]  Ian P. Woiwod,et al.  Mean-related stochasticity and population variability , 1993 .

[19]  A. Hastings,et al.  Persistence of Transients in Spatially Structured Ecological Models , 1994, Science.

[20]  Kevin J. Gaston,et al.  The Temporal Variability of Animal Abundances: Measures, Methods and Patterns , 1994 .

[21]  A. Hastings,et al.  The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations , 1994 .

[22]  Jan Lindström,et al.  Synchrony in population dynamics , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[24]  B. Bolker,et al.  Impact of vaccination on the spatial correlation and persistence of measles dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Ruxton Density-dependent migration and stability in a system of linked populations , 1996 .

[26]  D. Moss,et al.  Spatial synchrony and asynchrony in butterfly population dynamics , 1996 .

[27]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[28]  Dispersal and chaos in spatially structured models : an individual-level approach , 1996 .

[29]  E. Ranta,et al.  Large-Scale Synchrony in the Dynamics of Capercaillie, Black Grouse and Hazel Grouse Populations in Finland , 1996 .

[30]  Richard R. Veit,et al.  Dispersal, Population Growth, and the Allee Effect: Dynamics of the House Finch Invasion of Eastern North America , 1996, The American Naturalist.

[31]  R. Lande,et al.  Population dynamic models generating the lognormal species abundance distribution. , 1996, Mathematical biosciences.

[32]  E. Ranta,et al.  The spatial dimension in population fluctuations , 1997, Science.

[33]  Ransom A. Myers,et al.  Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish , 1997 .

[34]  Jan Lindström,et al.  The Moran effect and synchrony in population dynamics , 1997 .

[35]  E. Ranta,et al.  Synchronous dynamics and rates of extinction in spatially structured populations , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  G D Ruxton,et al.  Spatial self-organisation in ecology: pretty patterns or robust reality? , 1997, Trends in ecology & evolution.

[37]  E. Ranta,et al.  Spatial dynamics of populations , 1997 .

[38]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[39]  T. Clutton‐Brock,et al.  Noise and determinism in synchronized sheep dynamics , 1998, Nature.

[40]  Per Lundberg,et al.  POPULATION EXTINCTIONS IN CORRELATED ENVIRONMENTS , 1998 .

[41]  W. Koenig,et al.  Spatial Autocorrelation in California Land Birds , 1998 .

[42]  Ricard V. Solé,et al.  Modeling spatiotemporal dynamics in ecology , 1998 .

[43]  Subhash R. Lele,et al.  STATISTICAL ANALYSIS OF POPULATION DYNAMICS INSPACE AND TIME USING ESTIMATING FUNCTIONS , 1998 .

[44]  Mikko Heino,et al.  Noise colour, synchrony and extinctions in spatially structured populations , 1998 .

[45]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .