Galaxy and mass assembly (GAMA): The environmental impact on SFR and metallicity in galaxy groups

We present a study of the relationships and environmental dependencies between stellar mass, star formation rate, and gas metallicity for more than 700 galaxies in groups up to redshift 0.35 from the Galaxy And Mass Assembly (GAMA) survey. To identify the main drivers, our sample was analysed as a function of group-centric distance, projected galaxy number density, and stellar mass. By using control samples of more than 16 000 star-forming field galaxies and volume-limited samples, we find that the highest enhancement in SFR (0.3 dex) occurs in galaxies with the lowest local density. In contrast to previous work, our data show small enhancements of ∼0.1 dex in SFR for galaxies at the highest local densities or group-centric distances. Our data indicates quenching in SFR only for massive galaxies, suggesting that stellar mass might be the main driver of quenching processes for star forming galaxies. We can discard a morphological driven quenching, since the Sérsic index distribution for group and control galaxies are similar. The gas metallicity does not vary drastically. It increases ∼0.08 dex for galaxies at the highest local densities, and decreases for galaxies at the highest group-centric distances, in agreement with previous work. Altogether, the local density, rather than group-centric distance, shows the stronger impact in enhancing both, the SFR and gas metallicity. We applied the same methodology to galaxies from the IllustrisTNG simulations, and although we were able to reproduce the general observational trends, the differences between group and control samples only partially agree with the observations.

[1]  C. Conselice,et al.  Investigating the Effect of Galaxy Interactions on the Enhancement of Active Galactic Nuclei at 0.5 < z < 3.0 , 2020, The Astrophysical Journal.

[2]  Á. López-Sánchez,et al.  A single galaxy population? Statistical evidence that the star-forming main sequence might be the tip of the iceberg , 2020, 2009.06931.

[3]  Xiaohu Yang,et al.  The intrinsic SFRF and sSFRF of galaxies: comparing SDSS observation with IllustrisTNG simulation , 2020, Research in Astronomy and Astrophysics.

[4]  P. Torrey,et al.  Interacting galaxies in the IllustrisTNG simulations - I: Triggered star formation in a cosmological context , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  V. Debattista,et al.  Tidally induced warps of spiral galaxies in IllustrisTNG , 2020, 2002.07022.

[6]  A. Gallazzi,et al.  Oxygen yields as a constraint on feedback processes in galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  M. Boquien,et al.  SDSS-IV MaNGA: Spatial Evolution of Star Formation Triggered by Galaxy Interactions , 2019, The Astrophysical Journal.

[8]  H. Hwang,et al.  Evolution of star formation rate–density relation over cosmic time in a simulated universe: the observed reversal reproduced , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  A. McConnachie,et al.  A definitive merger-AGN connection at z ∼ 0 with CFIS: mergers have an excess of AGN and AGN hosts are more frequently disturbed , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  D. Goddard,et al.  Both starvation and outflows drive galaxy quenching , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  L. Hernquist,et al.  Jellyfish galaxies with the IllustrisTNG simulations – I. Gas-stripping phenomena in the full cosmological context , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  G. Fasano,et al.  Morphology rather than environment drives the SFR–mass relation in the local universe , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  A. Hopkins,et al.  Galaxy and Mass Assembly (GAMA): The environmental dependence of the galaxy main sequence , 2018, Astronomy & Astrophysics.

[14]  O. Ilbert,et al.  On the fast quenching of young low-mass galaxies up to z ∼ 0.6: new spotlight on the lead role of environment , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the effect of galaxy group environment on active galactic nuclei , 2018, 1801.03725.

[16]  L. Kewley,et al.  Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations , 2018, 1801.03500.

[17]  Annalisa Pillepich,et al.  Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation , 2017, 1711.11039.

[18]  D. Bizyaev,et al.  SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence , 2017, 1711.09162.

[19]  V. Springel,et al.  The evolution of the mass-metallicity relation and its scatter in IllustrisTNG , 2017, Monthly Notices of the Royal Astronomical Society.

[20]  Cca,et al.  The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations , 2017, 1707.05318.

[21]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[22]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[23]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[24]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[25]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[26]  M. Geller,et al.  The Dependence of the Mass-Metallicity Relation on Large Scale Environment , 2017, 1702.03323.

[27]  S. Borgani,et al.  The history of chemical enrichment in the intracluster medium from cosmological simulations , 2017, 1701.08164.

[28]  A. Hopkins,et al.  Galaxy and Mass Assembly (GAMA): active galactic nuclei in pairs of galaxies , 2016, 1611.03376.

[29]  P. Hopkins,et al.  MUFASA: Galaxy star formation, gas, and metal properties across cosmic time , 2016, 1610.01626.

[30]  R. Bower,et al.  The origin of the enhanced metallicity of satellite galaxies. , 2016, 1609.03379.

[31]  M. Hudson,et al.  Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits , 2016, 1607.07934.

[32]  K. Glazebrook,et al.  DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z ∼ 1 , 2016, 1605.05314.

[33]  P. Hopkins,et al.  MUFASA: Galaxy Formation Simulations With Meshless Hydrodynamics , 2016, 1604.01418.

[34]  J. Mohr,et al.  THE EVOLUTION OF THE INTRACLUSTER MEDIUM METALLICITY IN SUNYAEV ZEL’DOVICH-SELECTED GALAXY CLUSTERS AT 0 < z < 1.5 , 2016, 1603.03035.

[35]  S. Genel HOW ENVIRONMENT AFFECTS GALAXY METALLICITY THROUGH STRIPPING AND FORMATION HISTORY: LESSONS FROM THE ILLUSTRIS SIMULATION , 2016, 1602.02773.

[36]  R. Bower,et al.  The EAGLE simulations of galaxy formation: the importance of the hydrodynamics scheme , 2015, 1509.05056.

[37]  A. Robotham,et al.  Hyper-Fit: Fitting Linear Models to Multidimensional Data with Multivariate Gaussian Uncertainties , 2015, Publications of the Astronomical Society of Australia.

[38]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies , 2015, 1507.04447.

[39]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[40]  R. Maiolino,et al.  Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.

[41]  A. Finoguenov,et al.  LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING , 2015, 1504.05604.

[42]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – X. Does gas content alter star formation rate enhancement in galaxy interactions? , 2015, 1503.05194.

[43]  C. Frenk,et al.  Evolution of galaxy stellar masses and star formation rates in the eagle simulations , 2014, 1410.3485.

[44]  Institute for Astronomy,et al.  METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2 , 2014, 1410.1437.

[45]  J. A. Vázquez-Mata,et al.  Galaxy And Mass Assembly (GAMA): the dependence of the galaxy luminosity function on environment, redshift and colour , 2014, 1409.4681.

[46]  Ichi Tanaka,et al.  An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z > 2 , 2014, 1406.5219.

[47]  R. Maiolino,et al.  From haloes to Galaxies – I. The dynamics of the gas regulator model and the implied cosmic sSFR history , 2014, 1402.5964.

[48]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[49]  K. Hess,et al.  EVOLUTION IN THE H i GAS CONTENT OF GALAXY GROUPS: PRE-PROCESSING AND MASS ASSEMBLY IN THE CURRENT EPOCH , 2013, 1308.4646.

[50]  C. Steidel,et al.  THE MASS–METALLICITY RELATION OF A z ∼ 2 PROTOCLUSTER WITH MOSFIRE , 2013, 1306.6334.

[51]  E. Grebel,et al.  The metallicity-redshift relations for emission-line SDSS galaxies: examination of the dependence on the star formation rate , 2013 .

[52]  A. Hopkins,et al.  Galaxy and mass assembly (GAMA): A deeper view of the mass, metallicity and SFR relationships , 2013, 1306.1583.

[53]  Australian National University,et al.  Galaxy And Mass Assembly (GAMA): Spectroscopic analysis , 2013, 1301.7127.

[54]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – V. Tracing changes in star formation rate and metallicity out to separations of 80 kpc , 2012, 1207.4791.

[55]  Durham,et al.  Lightcone mock catalogues from semi-analytic models of galaxy formation – I. Construction and application to the BzK colour selection , 2012, 1206.4049.

[56]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[57]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations , 2012, 1205.3368.

[58]  G. Fasano,et al.  The distribution of galaxy morphological types and the morphology–mass relation in different environments at low redshift , 2011, 1110.0802.

[59]  C. Conselice,et al.  Measures of Galaxy Environment I - What is "Environment"? , 2011, 1109.6328.

[60]  S. Bamford,et al.  Galaxy And Mass Assembly: Stellar Mass Estimates , 2011, 1108.0635.

[61]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[62]  M. Carollo,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS , 2011, 1106.2546.

[63]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G3Cv1) , 2011, 1106.1994.

[64]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function , 2011, 1104.2379.

[65]  T. Thuan,et al.  GALAXY DOWNSIZING AND THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES: ORIGIN OF THE SCATTER IN THE N/H–O/H DIAGRAM , 2010, 1012.1148.

[66]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[67]  Á. Bongiovanni,et al.  Study of star-forming galaxies in SDSS up to redshift 0.4 II. Evolution from the fundamental parameters: mass, metallicity & SFR , 2010, 1003.5475.

[68]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[69]  Austria,et al.  The origin of the mass-metallicity relation: an analytical approach , 2010, 1001.4374.

[70]  Astronomy,et al.  COMPARING THE RELATION BETWEEN STAR FORMATION AND GALAXY MASS IN DIFFERENT ENVIRONMENTS , 2009, 0912.1180.

[71]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[72]  V. Wild,et al.  Star formation and AGN activity in SDSS cluster galaxies , 2009, 0909.3522.

[73]  A. McConnachie,et al.  The mass–metallicity relation in galaxy clusters: the relative importance of cluster membership versus local environment , 2009, 0903.4684.

[74]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[75]  A. McConnachie,et al.  GALAXY PAIRS IN THE SLOAN DIGITAL SKY SURVEY. I. STAR FORMATION, ACTIVE GALACTIC NUCLEUS FRACTION, AND THE LUMINOSITY/MASS–METALLICITY RELATION , 2008, 0803.0161.

[76]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[77]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[78]  M. Geller,et al.  Minor Galaxy Interactions: Star Formation Rates and Galaxy Properties , 2007, astro-ph/0703729.

[79]  D. Lambas,et al.  Active Galactic Nuclei and Galaxy Interactions , 2007 .

[80]  S. Bamford,et al.  The sizes of disc galaxies in intermediate-redshift clusters , 2007, astro-ph/0702709.

[81]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[82]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[83]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[84]  M. Bureau,et al.  The SAURON project - V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies , 2005, astro-ph/0511307.

[85]  L. Kewley,et al.  Metallicity and Nuclear Star Formation in Nearby Galaxy Pairs: Evidence for Tidally Induced Gas Flows , 2005, astro-ph/0511119.

[86]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[87]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[88]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[89]  University of Chicago,et al.  The ultimate halo mass in a ΛCDM universe , 2004, astro-ph/0412161.

[90]  C. Baugh,et al.  Where are the stars , 2004, astro-ph/0412049.

[91]  P. Alexander,et al.  Star formation in close pairs selected from the Sloan Digital Sky Survey , 2004, astro-ph/0407289.

[92]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[93]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[94]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[95]  Chisato Yamauchi,et al.  The morphology–density relation in the Sloan Digital Sky Survey , 2003, astro-ph/0312043.

[96]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[97]  D. Lambas,et al.  Galaxy pairs in the 2dF survey — I. Effects of interactions on star formation in the field , 2002, astro-ph/0212222.

[98]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The environmental dependence of galaxy star formation rates near clusters , 2002, astro-ph/0203336.

[99]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[100]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[101]  M. Geller,et al.  Tidally Triggered Star Formation in Close Pairs of Galaxies , 1999, astro-ph/9909217.

[102]  Alan Dressler,et al.  The Star Formation Histories of Galaxies in Distant Clusters , 1999, astro-ph/9901264.

[103]  R. Carlberg,et al.  Star Formation in Cluster Galaxies at 0.2 < z < 0.55 , 1997, astro-ph/9707339.

[104]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[105]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[106]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[107]  M. Postman,et al.  The morphology-density relation - The group connection , 1984 .

[108]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[109]  APJ IN PRESS Preprint typeset using L ATEX style emulateapj v. 04/03/99 A LOW GLOBAL STAR FORMATION RATE IN THE RICH GALAXY CLUSTER AC 114 AT Z = 0.32 , 2000 .

[110]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[111]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .