Recognising zero among implicitly defined elementary numbers
暂无分享,去创建一个
[1] Chee-Keng Yap,et al. Recent progress in exact geometric computation , 2005, J. Log. Algebraic Methods Program..
[2] Chen Li,et al. Exact Geometric Computation: Theory and Applications , 2001 .
[3] Daniel Richardson,et al. Zero Tests for Constants in Simple Scientific Computation , 2007, Math. Comput. Sci..
[4] Chee-Keng Yap,et al. A new constructive root bound for algebraic expressions , 2001, SODA '01.
[5] Jihun Yu,et al. Foundations of Exact Rounding , 2009, WALCOM.
[6] A. Neumaier. Interval methods for systems of equations , 1990 .
[7] B. F. Caviness,et al. A note on algebraic independence of logarithmic and exponential constants , 1978, SIGS.
[8] G. Alefeld,et al. Introduction to Interval Computation , 1983 .
[9] Chee-Keng Yap,et al. Robust Geometric Computation , 2016, Encyclopedia of Algorithms.
[10] Kurt Mehlhorn,et al. Exact geometric computation made easy , 1999 .
[11] John Canny,et al. The complexity of robot motion planning , 1988 .
[12] Chee-Keng Yap,et al. A core library for robust numeric and geometric computation , 1999, SCG '99.
[13] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[14] Chee Yap. On guaranteed accuracy computation , 2004 .
[15] Angus Macintyre,et al. On the decidability of the real exponential field , 1996 .
[16] John Shackell. Zero-equivalence in function fields defined by algebraic differential equations , 1993 .
[17] Adam W. Strzebonski. Real root isolation for exp-log functions , 2008, ISSAC '08.