Visual processing: Parallel-er and Parallel-er

The mammalian visual system processes many different aspects of the visual scene in separate, parallel channels. Recent experiments suggest that the visual cortex, like the retina, forms parallel circuits even at very fine spatial scales.

[1]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[2]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[3]  E. Callaway,et al.  Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex , 1996, Nature.

[4]  E. Castet,et al.  Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies , 2000, Visual Neuroscience.

[5]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[6]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[7]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[8]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[9]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[10]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[11]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[12]  W. Newsome,et al.  The neuronal basis of motion perception. , 1993, Ciba Foundation symposium.

[13]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  S. Sutherland Eye, brain and vision , 1993, Nature.

[16]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[17]  Edward M Callaway,et al.  Diversity and Cell Type Specificity of Local Excitatory Connections to Neurons in Layer 3B of Monkey Primary Visual Cortex , 2000, Neuron.

[18]  R H Masland,et al.  Confronting complexity: strategies for understanding the microcircuitry of the retina. , 2000, Annual review of neuroscience.

[19]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[20]  M. Shiffrar,et al.  Different motion sensitive units are involved in recovering the direction of moving lines , 1993, Vision Research.

[21]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[22]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.