Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides

[1]  W. Helbert,et al.  New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum , 2017 .

[2]  C. Dixon,et al.  Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction , 2017 .

[3]  Lionel Muniglia,et al.  A new insight into cell walls of Chlorophyta , 2017 .

[4]  M. Hendrickx,et al.  Microalgal biomass as a (multi)functional ingredient in food products: Rheological properties of microalgal suspensions as affected by mechanical and thermal processing , 2017 .

[5]  E. Bon,et al.  Neutral sugars determination in Chlorella: Use of a one-step dilute sulfuric acid hydrolysis with reduced sample size followed by HPAEC analysis , 2017 .

[6]  P. Michaud,et al.  Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. , 2016, Biotechnology advances.

[7]  Yi Zheng,et al.  Overview of microalgal extracellular polymeric substances (EPS) and their applications. , 2016, Biotechnology advances.

[8]  M. Hamed,et al.  Physicochemical analysis of cellulose from microalgae Nannochloropsis gaditana , 2016 .

[9]  A. Aremu,et al.  Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains , 2016 .

[10]  C. Posten,et al.  Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii , 2016, International journal of food sciences and nutrition.

[11]  A. Loey,et al.  The evolution of quality characteristics of mango piece after pasteurization and during shelf life in a mango juice drink , 2016, European Food Research and Technology.

[12]  Longjiang Yu,et al.  Transcriptome analysis reveals that up-regulation of the fatty acid synthase gene promotes the accumulation of docosahexaenoic acid in Schizochytrium sp. S056 when glycerol is used , 2016 .

[13]  Guanpin Yang,et al.  Silencing UDP-glucose pyrophosphorylase gene in Phaeodactylum tricornutum affects carbon allocation. , 2016, New biotechnology.

[14]  M. Eppink,et al.  Cell disruption for microalgae biorefineries. , 2015, Biotechnology advances.

[15]  J. VanderGheynst,et al.  Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella , 2015, Letters in applied microbiology.

[16]  P. Anastas,et al.  Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. , 2014, Bioresource technology.

[17]  B. Yan,et al.  The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. , 2014, Carbohydrate polymers.

[18]  M. Hendrickx,et al.  The impact of extraction with a chelating agent under acidic conditions on the cell wall polymers of mango peel. , 2014, Food chemistry.

[19]  Imogen Foubert,et al.  Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. , 2014, Food chemistry.

[20]  Robert E. Jinkerson,et al.  Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall , 2014, Eukaryotic Cell.

[21]  Chengwu Zhang,et al.  Preliminary Characterization, Antioxidant Properties and Production of Chrysolaminarin from Marine Diatom Odontella aurita , 2014, Marine drugs.

[22]  Vincenzo Fogliano,et al.  Functional ingredients from microalgae. , 2014, Food & function.

[23]  Xiao-Jun Ji,et al.  Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. , 2014, Bioresource technology.

[24]  P. Nichols,et al.  Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for Production of Biodiesel, Long-Chain Omega-3 Oils, and Exopolysaccharide , 2014, Marine Biotechnology.

[25]  C. Bruneel,et al.  Stability of omega-3 LC-PUFA-rich photoautotrophic microalgal oils compared to commercially available omega-3 LC-PUFA oils. , 2013, Journal of agricultural and food chemistry.

[26]  S. Myklestad Production, Chemical Structure, Metabolism, and Biological Function of the (1→3)-Linked, β3-D-Glucans in Diatoms , 2013 .

[27]  Gholamreza Djelveh,et al.  Separation and fractionation of exopolysaccharides from Porphyridium cruentum. , 2013, Bioresource technology.

[28]  Jo‐Shu Chang,et al.  Microalgae-based carbohydrates for biofuel production , 2013 .

[29]  He Huang,et al.  Biomass Composition, Lipid Characterization, and Metabolic Profile Analysis of the Fed-Batch Fermentation Process of Two Different Docosahexanoic Acid Producing Schizochytrium sp. Strains , 2013, Applied Biochemistry and Biotechnology.

[30]  Q. Hu Environmental effects on cell composition. , 2013 .

[31]  P. Elliott,et al.  Effect of lower sodium intake on health: systematic review and meta-analyses , 2013, BMJ : British Medical Journal.

[32]  Phillip E. Savage,et al.  Fast Hydrothermal Liquefaction of Nannochloropsis sp. To Produce Biocrude , 2013 .

[33]  J. M. Franco,et al.  Comparison of microalgal biomass profiles as novel functional ingredient for food products , 2013 .

[34]  L. Laurens,et al.  Separation and quantification of microalgal carbohydrates. , 2012, Journal of chromatography. A.

[35]  Song Xue,et al.  Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. , 2012, Bioresource technology.

[36]  D. Pleissner,et al.  Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii , 2012, Biotechnology and bioengineering.

[37]  S. Pieper,et al.  A new arabinomannan from the cell wall of the chlorococcal algae Chlorella vulgaris. , 2012, Carbohydrate research.

[38]  N. Rajarajan,et al.  Carbohydrate-degrading bacteria closely associated with Tetraselmis indica: influence on algal growth , 2012 .

[39]  L. Milke,et al.  Changes in enzymatic activity during early ­development of bay scallops Argopecten irradians and sea scallops Placopecten magellanicus , 2012 .

[40]  Imogen Foubert,et al.  Optimization of an Analytical Procedure for Extraction of Lipids from Microalgae , 2012 .

[41]  Yu-Shen Cheng,et al.  The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella , 2011 .

[42]  H. Gruppen,et al.  Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. , 2011, Bioresource technology.

[43]  J. Doucha,et al.  Microalgae—novel highly efficient starch producers , 2011, Biotechnology and bioengineering.

[44]  Y. Chisti,et al.  Protein measurements of microalgal and cyanobacterial biomass. , 2010, Bioresource technology.

[45]  S. Arad,et al.  Red microalgal cell-wall polysaccharides: biotechnological aspects. , 2010, Current opinion in biotechnology.

[46]  J. W. Blackburn,et al.  Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. , 2010, Bioresource technology.

[47]  V. Smith,et al.  Differential antibacterial activities of fusiform and oval morphotypes of Phaeodactylum tricornutum (Bacillariophyceae) , 2010, Journal of the Marine Biological Association of the United Kingdom.

[48]  L. Ulmann,et al.  Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae) , 2010, Journal of Applied Phycology.

[49]  S. Shumway,et al.  Microalgal Cell Surface Carbohydrates as Recognition Sites for Particle Sorting in Suspension-Feeding Bivalves , 2010, The Biological Bulletin.

[50]  Z. Wen,et al.  Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass , 2009 .

[51]  A. Roeck,et al.  Pectins in Processed Fruits and Vegetables: Part II—Structure–Function Relationships , 2009 .

[52]  S. Roudesli,et al.  Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis , 2009 .

[53]  Robert Glaser,et al.  Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. , 2009, Carbohydrate research.

[54]  Ana Cristina Oliveira,et al.  Microalgae as a raw material for biofuels production , 2009, Journal of Industrial Microbiology & Biotechnology.

[55]  B. Jefferson,et al.  Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. , 2008, Water research.

[56]  Yves F Dufrêne,et al.  Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. , 2008, Environmental microbiology.

[57]  Wolfgang Becker,et al.  Microalgae in human and animal nutrition. , 2007 .

[58]  Kemka H. Ogbonda,et al.  Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. , 2007, Bioresource technology.

[59]  E. Becker Micro-algae as a source of protein. , 2007, Biotechnology advances.

[60]  Satoshi Kagiwada,et al.  Docosahexaenoic Acid Production and Lipid-Body Formation in Schizochytrium limacinum SR21 , 2006, Marine Biotechnology.

[61]  G. Underwood,et al.  Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom‐dominated, microalgal biofilm over a tidal emersio—immersion period , 2006 .

[62]  G. Clemente,et al.  Bioaccessibility of minerals in school meals: Comparison between dialysis and solubility methods , 2005 .

[63]  E. Barbarino,et al.  Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors , 2004 .

[64]  G. Strecker,et al.  The extracellular polysaccharide of Porphyridium sp.: an NMR study of lithium-resistant oligosaccharidic fragments. , 2004, Carbohydrate research.

[65]  M. Freire-Garabal,et al.  Anti‐inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum , 2003, Phytotherapy research : PTR.

[66]  O. Tokuşoglu,et al.  Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana , 2003 .

[67]  M. Karpasas,et al.  Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties , 2002 .

[68]  E. Granum,et al.  A simple combined method for determination of β-1,3-glucan and cell wall polysaccharides in diatoms , 2002, Hydrobiologia.

[69]  P. Jaouen,et al.  The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae (Chlorella sp. and Porphyridium purpureum): Advantage of a swirling decaying flow , 2002, Bioprocess and biosystems engineering.

[70]  F. García-Camacho,et al.  Biomass nutrient profiles of the microalga Nannochloropsis. , 2001, Journal of agricultural and food chemistry.

[71]  José Luis Guil-Guerrero,et al.  BIOMASS NUTRIENT PROFILES OF THE MICROALGA PHAEODACTYLUM TRICORNUTUM , 2001 .

[72]  F. Ascencio,et al.  Anti‐adhesive activity of sulphated exopolysaccharides of microalgae on attachment of red sore disease‐associated bacteria and Helicobacter pylori to tissue culture cells , 2000, Letters in applied microbiology.

[73]  S. Derenne,et al.  Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae , 1999 .

[74]  M. Melkonian,et al.  THE CELL WALL (THECA) OF TETRASELMIS STRIATA (CHLOROPHYTA): MACROMOLECULAR COMPOSITION AND STRUCTURAL ELEMENTS OF THE COMPLEX POLYSACCHARIDES , 1998 .

[75]  H. Nakanishi,et al.  Further purification and structural analysis of calcium spirulan from Spirulina platensis. , 1998, Journal of natural products.

[76]  Yuan-Kun Lee,et al.  Determination of biomass dry weight of marine microalgae , 1997, Journal of Applied Phycology.

[77]  M. Melkonian,et al.  The structure of an acidic trisaccharide component from a cell wall polysaccharide preparation of the green alga Tetraselmis striata Butcher , 1995 .

[78]  B. McCleary,et al.  Quantitative Measurement of Total Starch in Cereal Flours and Products , 1994 .

[79]  J. Cornet,et al.  Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis , 1993, Biotechnology Letters.

[80]  A. Voragen,et al.  Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. , 1992, Analytical biochemistry.

[81]  W. Reisser,et al.  Cell wall composition of virus-sensitive symbiotic Chlorella species , 1992 .

[82]  R. Philippis,et al.  Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima , 1992 .

[83]  Malcolm R. Brown,et al.  The amino-acid and sugar composition of 16 species of microalgae used in mariculture , 1991 .

[84]  J. Blanco,et al.  Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae , 1989 .

[85]  A. Rotem,et al.  Effect of Nitrogen on Polysaccharide Production in a Porphyridium sp , 1988, Applied and environmental microbiology.

[86]  S. Arad,et al.  Chelating Properties of Extracellular Polysaccharides from Chlorella spp , 1987, Applied and environmental microbiology.

[87]  J. Whyte Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves , 1987 .

[88]  R. F. Mcfeeters,et al.  Measurement of pectin methylation in plant cell walls. , 1984, Analytical biochemistry.

[89]  D. Meindl,et al.  Composition of the cell wall of Chlorella fusca , 1982, Planta.

[90]  W. Darley,et al.  Cell wall composition and synthesis via Golgi-directed scale formation in the marine eucaryote, Schizochytrium aggregatum, with a note on Thraustochytrium sp. , 1973, Archiv für Mikrobiologie.

[91]  R. G. Price,et al.  A note on the determination of the ester sulphate content of sulphated polysaccharides. , 1962, The Biochemical journal.

[92]  A. Vatter,et al.  Observations on Cellular Structures of Porphyridium cruentum , 1959, The Journal of biophysical and biochemical cytology.

[93]  Michael A. Borowitzka,et al.  The Physiology of Microalgae , 2016, Developments in Applied Phycology.

[94]  F. Zito,et al.  Identification of lipid and saccharide constituents of whole microalgal cells by ¹³C solid-state NMR. , 2015, Biochimica et biophysica acta.

[95]  Rui Morais,et al.  Bioactivity and Applications of Polysaccharides from Marine Microalgae , 2014 .

[96]  Imogen Foubert,et al.  Influence of extraction solvent system on extractability of lipid components from different microalgae species , 2014 .

[97]  C. Safi,et al.  Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods , 2014 .

[98]  Guang Wang,et al.  Characterization of Lipid Components in Two Microalgae for Biofuel Application , 2012 .

[99]  Henri G. Gerken,et al.  Enzymatic cell wall degradation of Chlorellavulgaris and other microalgae for biofuels production , 2012, Planta.

[100]  Q. Hu,et al.  Purification and identification of polysaccharide derived from Chlorella pyrenoidosa , 2007 .

[101]  J. Raven,et al.  Carbohydrate Metabolism and Respiration in Algae , 2003 .

[102]  S. Arad,et al.  The extracellular polysaccharides of the red microalgae : chemistry and rheology , 1991 .

[103]  L. Navarini,et al.  Polysaccharides from cyanobacteria , 1990 .

[104]  M. Blumreisinger,et al.  Cell wall composition of chlorococcal algae , 1983 .

[105]  E. Percival,et al.  1299. Carbohydrates of Phaeodactylum tricornutum. Part II. A sulphated glucuronomannan , 1965 .

[106]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .