Interval singleton type-2 TSK fuzzy logic systems using orthogonal least-squares and backpropagation methods as hybrid learning mechanism

A novel learning methodology based on a hybrid mechanism for training interval singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems uses recursive orthogonal least-squares to tune the type-1 consequent parameters and the steepest descent method to tune the interval type-2 antecedent parameters. The proposed hybrid-learning algorithm changes the interval type-2 model parameters adaptively to minimize some criterion function as new information becomes available and to match desired input-output data pairs. Its antecedent sets are type-2 fuzzy sets, its consequent sets are type-1 fuzzy sets, and its inputs are singleton fuzzy numbers without uncertain standard deviations. As reported in the literature, the performance indices of hybrid models have proved to be better than those of the individual training mechanisms used alone. Experiments were carried out involving the application of the hybrid interval type-2 Takagi-Sugeno-Kang fuzzy logic systems for modeling and prediction of the scale-breaker entry temperature in a hot strip mill for three different types of coils. The results demonstrate how the interval type-2 fuzzy system learns from selected input-output data pairs and improves its performance as hybrid training progresses.

[1]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[2]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[3]  Gerardo M. Mendez,et al.  Modelling and Prediction of the MXNUSD Exchange Rate Using Interval Singleton Type-2 Fuzzy Logic Systems , 2007, Eng. Lett..

[4]  MelinPatricia,et al.  A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral , 2009 .

[5]  Jerry M. Mendel,et al.  New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule , 2007, Inf. Sci..

[6]  Alberto Cavazos,et al.  Hot Strip Mill Temperature Prediction using Hybrid Learning Interval Singleton Type-2 FLS , 2003, Modelling and Simulation.

[7]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[8]  Michel Verleysen,et al.  Non-linear financial time series forecasting application to the Bel 20 stock market index , 2000 .

[9]  Ismael Lopez-Juarez,et al.  First-order interval type-2 TSK fuzzy logic systems using a hybrid learning algorithm , 2005 .

[10]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[11]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[12]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[13]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[14]  O. Castillo,et al.  Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[15]  Gerardo M. Mendez,et al.  Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods , 2009, Inf. Sci..

[16]  Oscar Castillo,et al.  An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications , 2007, Analysis and Design of Intelligent Systems using Soft Computing Techniques.

[17]  Oscar Castillo,et al.  A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks , 2009, Inf. Sci..

[18]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[19]  G.M. Mendez Orthogonal-back propagation hybrid learning algorithm for type-2 fuzzy logic systems , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[20]  Tzuu-Hseng S. Li,et al.  Design of interval type-2 fuzzy sliding-mode controller , 2008, Inf. Sci..

[21]  Jerry M. Mendel,et al.  On the importance of interval sets in type-2 fuzzy logic systems , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[22]  Antonio Rodríguez Díaz,et al.  Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure , 2011, Inf. Sci..

[23]  Oscar Castillo,et al.  Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms , 2011, Soft Comput..

[24]  Oscar Castillo,et al.  An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory , 2004, Inf. Sci..

[25]  J. Mendel,et al.  An introduction to type-2 TSK fuzzy logic systems , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[26]  Patricia Melin,et al.  A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral , 2009, Inf. Sci..

[27]  Oscar Castillo,et al.  Interval Type-2 TSK Fuzzy Logic Systems Using Hybrid Learning Algorithm , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[28]  Gerardo M. Mendez,et al.  Entry temperature prediction of a hot strip mill by a hybrid learning type-2 FLS , 2006, J. Intell. Fuzzy Syst..

[29]  Oscar Castillo,et al.  An improved method for edge detection based on interval type-2 fuzzy logic , 2010, Expert Syst. Appl..

[30]  Oscar Castillo,et al.  A new hybrid approach for plant monitoring and diagnostics using type-2 fuzzy logic and fractal theory , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[31]  Gerardo M. Mendez,et al.  Interval Type-2 ANFIS , 2008, Innovations in Hybrid Intelligent Systems.

[32]  Gerardo M. Mendez,et al.  Interval Type-1 Non-Singleton Type-2 TSK Fuzzy Logic Systems Using the Hybrid Training Method RLS-BP , 2007, FOCI.

[33]  Nohé R. Cázarez-Castro,et al.  Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash , 2010, Expert Syst. Appl..

[34]  Robert John,et al.  Embedded interval valued type-2 fuzzy sets , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[35]  I. Turksen Interval Valued Fuzzy Sets and Fuzzy Connectives , 1993 .

[36]  Oscar Montiel,et al.  Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic , 2007, Inf. Sci..

[37]  Jerry M. Mendel,et al.  Uncertainty measures for interval type-2 fuzzy sets , 2007, Inf. Sci..