Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps

We recall three well-known theorems related to the simplest codimension-one bifurcations occurring in discrete time dynamical systems, such as the fold, flip and Neimark–Sacker bifurcations, and analyze these bifurcations in presence of certain degeneracy conditions, when the above mentioned theorems are not applied. The occurrence of such degenerate bifurcations is particularly important in piecewise smooth maps, for which it is not possible to specify in general the result of the bifurcation, as it strongly depends on the global properties of the map. In fact, the degenerate bifurcations mainly occur in piecewise smooth maps defined in some subspace of the phase space by a linear or linear-fractional function, although not necessarily only by such functions. We also discuss the relation between degenerate bifurcations and border-collision bifurcations.

[1]  Erik Mosekilde,et al.  Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Applications to Power Converters, Relay and Pulse-Width Modulated Control Systems, and Human Decision-Making Behavior , 2003 .

[2]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[3]  Shunji Ito,et al.  On unimodal linear transformations and chaos , 1979 .

[4]  Pascal Chargé,et al.  Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit. , 2011, Chaos.

[5]  Laura Gardini,et al.  Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves , 2006 .

[6]  M. I. Feigin,et al.  Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems: PMM vol. 34, n≗5, 1970, pp. 861–869 , 1970 .

[7]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[8]  Michael Schanz,et al.  Calculation of bifurcation Curves by Map Replacement , 2010, Int. J. Bifurc. Chaos.

[9]  Laura Gardini,et al.  Growing through chaotic intervals , 2008, J. Econ. Theory.

[10]  Michael Schanz,et al.  On a special type of border-collision bifurcations occurring at infinity , 2010 .

[11]  V. V. Fedorenko,et al.  Dynamics of One-Dimensional Maps , 1997 .

[12]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[13]  Iryna Sushko,et al.  Business Cycle Dynamics , 2006 .

[14]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[15]  O. Feely,et al.  Lowpass sigma–delta modulation: an analysis by means of the critical lines tool , 2001 .

[16]  V. Kocić,et al.  Global Behavior of Nonlinear Difference Equations of Higher Order with Applications , 1993 .

[17]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[18]  Laura Gardini,et al.  BISTABILITY AND BORDER-COLLISION BIFURCATIONS FOR A FAMILY OF UNIMODAL PIECEWISE SMOOTH MAPS , 2005 .

[19]  Laura Gardini,et al.  Hicks' trade cycle revisited: cycles and bifurcations , 2003, Math. Comput. Simul..

[20]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[21]  Tönu Puu,et al.  Oligopoly Dynamics : Models and Tools , 2002 .

[22]  Orla Feely,et al.  Nonlinear Dynamics of Bandpass Sigma-Delta Modulation - an Investigation by Means of the Critical Lines Tool , 2000, Int. J. Bifurc. Chaos.

[23]  Somnath Maity,et al.  Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. , 2006, Chaos.

[24]  Laura Gardini,et al.  About Two Mechanisms of Reunion of Chaotic Attractors , 1998 .

[25]  Mario di Bernardo,et al.  C-bifurcations and period-adding in one-dimensional piecewise-smooth maps , 2003 .

[26]  James D. Meiss,et al.  Neimark-Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps , 2008, SIAM J. Appl. Dyn. Syst..

[27]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[28]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .

[29]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[30]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[31]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[32]  Laura Gardini,et al.  Cournot duopoly when the competitors operate multiple production plants , 2009 .

[33]  Laura Gardini,et al.  The Hicksian floor-roof model for two regions linked by interregional trade , 2003 .

[34]  Michael Schanz,et al.  On multi-parametric bifurcations in a scalar piecewise-linear map , 2006 .

[35]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[36]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[37]  Tönu Puu,et al.  Business Cycle Dynamics : Models and Tools , 2006 .

[38]  J. Yorke,et al.  Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits , 2000 .

[39]  Laura Gardini,et al.  Center bifurcation for Two-Dimensional Border-Collision Normal Form , 2008, Int. J. Bifurc. Chaos.

[40]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .