A novel mixture model using the multivariate normal mean-variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets

This paper presents a new finite mixture model based on the multivariate normal mean–variance mixture of Birnbaum–Saunders (NMVBS) distribution. We develop a computationally analytical EM algorithm for model fitting. Due to the dependence of this algorithm on initial values and the number of mixing components, a learning-based EM algorithm and an extended variant are proposed. Numerical simulations show that the proposed algorithms allow for better clustering performance and classification accuracy than some competing approaches. The effectiveness and prominence of the proposed methodology are also shown through an application to an extrasolar planet dataset.

[1]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[3]  S. Marchi,et al.  Extrasolar Planet Taxonomy: A New Statistical Approach , 2007, 0705.0910.

[4]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[5]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[6]  Ryan P. Browne,et al.  Mixtures of Shifted AsymmetricLaplace Distributions , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Narayanaswamy Balakrishnan,et al.  Estimation in the Birnbaum-Saunders distribution based on scale-mixture of normals and the EM-algorithm , 2009 .

[8]  B. Lindsay,et al.  The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family , 1994 .

[9]  Ryan P. Browne,et al.  A mixture of SDB skew-t factor analyzers , 2013, 1310.6224.

[10]  I. Good THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS , 1953 .

[11]  Miin-Shen Yang,et al.  A robust EM clustering algorithm for Gaussian mixture models , 2012, Pattern Recognit..

[12]  Edwin L. Turner,et al.  APJ IN PRESS Preprint typeset using LATEX style emulateapj v. 10/09/06 ON THE ECCENTRICITY DISTRIBUTION OF EXOPLANETS FROM RADIAL VELOCITY SURVEYS , 2022 .

[13]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[14]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[15]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[16]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[17]  Hajo Holzmann,et al.  Identifiability of Finite Mixtures of Elliptical Distributions , 2006 .

[18]  Nonlinear regression models based on the normal mean–variance mixture of Birnbaum–Saunders distribution , 2017 .

[19]  P. Blæsild The two-dimensional hyperbolic distribution and related distributions, with an application to Johannsen's bean data , 1981 .

[20]  Ryan P. Browne,et al.  A mixture of generalized hyperbolic distributions , 2013, 1305.1036.

[21]  Saumyadipta Pyne,et al.  Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms , 2012, Stat. Comput..

[22]  S Ida,et al.  Toward a Deterministic Model of Planetary Formation. III. Mass Distribution of Short-Period Planets around Stars of Various Masses , 2005 .

[23]  C. Genest,et al.  ESTIMATORS BASED ON KENDALL'S TAU IN MULTIVARIATE COPULA MODELS , 2011 .

[24]  Wan-Lun Wang,et al.  Mixtures of restricted skew-t factor analyzers with common factor loadings , 2018, Advances in Data Analysis and Classification.

[25]  Victor H. Lachos,et al.  Multivariate mixture modeling using skew-normal independent distributions , 2012, Comput. Stat. Data Anal..

[26]  Geoffrey J. McLachlan,et al.  Robust mixture modelling using the t distribution , 2000, Stat. Comput..

[27]  Ahad Jamalizadeh,et al.  Multivariate normal mean–variance mixture distribution based on Birnbaum–Saunders distribution , 2015 .

[28]  Paul D. McNicholas,et al.  Clustering with the multivariate normal inverse Gaussian distribution , 2016, Comput. Stat. Data Anal..

[29]  A. F. Desmond,et al.  On the Relationship between Two Fatigue-Life Models , 1986, IEEE Transactions on Reliability.

[30]  Ryan P. Browne,et al.  Mixtures of skew-t factor analyzers , 2013, Comput. Stat. Data Anal..

[31]  Tsung-I Lin,et al.  Flexible mixture modelling using the multivariate skew-t-normal distribution , 2014, Stat. Comput..

[32]  Jack C. Lee,et al.  Robust mixture modeling using the skew t distribution , 2007, Stat. Comput..

[33]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[34]  Tsung-I Lin,et al.  Finite mixture modelling using the skew normal distribution , 2007 .

[35]  Dimitris Karlis,et al.  Model-based clustering with non-elliptically contoured distributions , 2009, Stat. Comput..

[36]  On the Finite Mixture Modelling via Normal Mean-variance Birnbaum-Saunders Distribution , 2017 .

[37]  Geoffrey J. McLachlan,et al.  Finite mixtures of multivariate skew t-distributions: some recent and new results , 2014, Stat. Comput..

[38]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[39]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[40]  G. Patil,et al.  Diversity as a Concept and its Measurement , 1982 .

[41]  V. H. Lachos,et al.  Robust mixture regression modeling based on scale mixtures of skew-normal distributions , 2016 .

[42]  Geoffrey J. McLachlan,et al.  Extending mixtures of factor models using the restricted multivariate skew-normal distribution , 2013, J. Multivar. Anal..

[43]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[44]  Tsung I. Lin,et al.  Robust mixture modeling using multivariate skew t distributions , 2010, Stat. Comput..

[45]  Leslie Rogers,et al.  THE ECCENTRICITY DISTRIBUTION OF SHORT-PERIOD PLANET CANDIDATES DETECTED BY KEPLER IN OCCULTATION , 2015, 1511.02861.

[46]  Sharon X. Lee,et al.  Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution , 2018 .

[47]  Kun Chen,et al.  Finite mixture modeling of censored data using the multivariate Student-t distribution , 2017, J. Multivar. Anal..

[48]  Sharon X. Lee,et al.  Finite mixtures of canonical fundamental skew $$t$$t-distributions , 2014 .

[49]  Shou-Jen Chang-Chien,et al.  Learning-based EM algorithm for normal-inverse Gaussian mixture model with application to extrasolar planets , 2017 .

[50]  Miin-Shen Yang,et al.  Self-updating clustering algorithm for estimating the parameters in mixtures of von Mises distributions , 2012 .

[51]  Wen-Liang Hung,et al.  Data Analysis on the Extra-solar Planets Using Robust Clustering , 2006 .