Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

[1]  K. Vogiatzis,et al.  Data-Driven Acceleration of the Coupled-Cluster Singles and Doubles Iterative Solver. , 2019, The journal of physical chemistry letters.

[2]  Alexander Binder,et al.  Unmasking Clever Hans predictors and assessing what machines really learn , 2019, Nature Communications.

[3]  Thomas F. Miller,et al.  A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules , 2019, The Journal of chemical physics.

[4]  Logan T. Ward,et al.  ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition , 2018, Scientific Reports.

[5]  David A. Strubbe,et al.  Deep learning and density-functional theory , 2018, Physical Review A.

[6]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[7]  Yang Yang,et al.  Accurate molecular polarizabilities with coupled cluster theory and machine learning , 2018, Proceedings of the National Academy of Sciences.

[8]  K-R Müller,et al.  SchNetPack: A Deep Learning Toolbox For Atomistic Systems. , 2018, Journal of chemical theory and computation.

[9]  Geoffrey J. Gordon,et al.  A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians. , 2018, Journal of chemical theory and computation.

[10]  Klaus-Robert Müller,et al.  Quantum-chemical insights from interpretable atomistic neural networks , 2018, Explainable AI.

[11]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[12]  Thomas F. Miller,et al.  Transferability in Machine Learning for Electronic Structure via the Molecular Orbital Basis. , 2018, Journal of chemical theory and computation.

[13]  Philipp Marquetand,et al.  Machine Learning for Organic Synthesis: Are Robots Replacing Chemists? , 2018, Angewandte Chemie.

[14]  O. Anatole von Lilienfeld,et al.  Quantum Machine Learning in Chemical Compound Space , 2018 .

[15]  John R. Kitchin,et al.  Machine learning in catalysis , 2018, Nature Catalysis.

[16]  K. Müller,et al.  Towards exact molecular dynamics simulations with machine-learned force fields , 2018, Nature Communications.

[17]  Li Li,et al.  Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds , 2018, ArXiv.

[18]  Alexander V. Shapeev,et al.  Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning , 2018, Physical Review B.

[19]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[20]  Martin Wattenberg,et al.  Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) , 2017, ICML.

[21]  Andrea Grisafi,et al.  Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems. , 2017, Physical review letters.

[22]  Klaus-Robert Müller,et al.  SchNet: A continuous-filter convolutional neural network for modeling quantum interactions , 2017, NIPS.

[23]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[24]  Klaus-Robert Müller,et al.  Learning how to explain neural networks: PatternNet and PatternAttribution , 2017, ICLR.

[25]  Michael Gastegger,et al.  Machine learning molecular dynamics for the simulation of infrared spectra† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02267k , 2017, Chemical science.

[26]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[27]  Alexander V. Shapeev,et al.  Active learning of linearly parametrized interatomic potentials , 2016, 1611.09346.

[28]  Klaus-Robert Müller,et al.  Machine learning of accurate energy-conserving molecular force fields , 2016, Science Advances.

[29]  J S Smith,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost , 2016, Chemical science.

[30]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[31]  R. Bowen,et al.  Machine-learned approximations to Density Functional Theory Hamiltonians , 2016, Scientific Reports.

[32]  Li Li,et al.  Bypassing the Kohn-Sham equations with machine learning , 2016, Nature Communications.

[33]  R. Maurer,et al.  Ab initio tensorial electronic friction for molecules on metal surfaces: Nonadiabatic vibrational relaxation , 2016, 1607.02650.

[34]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[35]  O. A. von Lilienfeld,et al.  Guiding ab initio calculations by alchemical derivatives. , 2016, The Journal of chemical physics.

[36]  Gábor Csányi,et al.  Comparing molecules and solids across structural and alchemical space. , 2015, Physical chemistry chemical physics : PCCP.

[37]  Karsten Reuter,et al.  Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values. , 2015, The Journal of chemical physics.

[38]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[39]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[40]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[41]  Geoffrey E. Hinton,et al.  Generating Text with Recurrent Neural Networks , 2011, ICML.

[42]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[43]  Joel M. Bowman,et al.  Permutationally invariant potential energy surfaces in high dimensionality , 2009 .

[44]  T. Carrington,et al.  An improved neural network method for solving the Schrödinger equation1 , 2009 .

[45]  M. Parrinello,et al.  Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[47]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[48]  C Z Wang,et al.  Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals. , 2004, The Journal of chemical physics.

[49]  Michihiko Sugawara,et al.  Numerical solution of the Schrödinger equation by neural network and genetic algorithm , 2001 .

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[52]  O. Isayev,et al.  ible neural network potential with DFT accuracy at force fi eld computational cost † , 2017 .

[53]  Stéphane Mallat,et al.  Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities , 2017, NIPS.

[54]  Melanie Keller,et al.  Essentials Of Computational Chemistry Theories And Models , 2016 .

[55]  Frank Neese,et al.  The ORCA program system , 2012 .