Dynamics of Dust Particles of Different Structure: Application to the Modeling of Dust Motion in the Vicinity of the Nucleus of Comet 67P/Churyumov–Gerasimenko

[1]  P. Hartogh,et al.  Acceleration of cometary dust near the nucleus: application to 67P/Churyumov-Gerasimenko , 2016, 1606.08461.

[2]  Giampiero Naletto,et al.  EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION , 2016 .

[3]  F. Scholten,et al.  A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field , 2016, Nature.

[4]  Luigi Colangeli,et al.  COMET 67P/CHURYUMOV–GERASIMENKO: CLOSE-UP ON DUST PARTICLE FRAGMENTS , 2016 .

[5]  J. Halekas,et al.  Surface charging and electrostatic dust acceleration at the nucleus of comet 67P during periods of low activity , 2015 .

[6]  S. Debei,et al.  Are fractured cliffs the source of cometary dust jets ? insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko , 2015, 1512.03193.

[7]  Tobias Kramer,et al.  PREVAILING DUST-TRANSPORT DIRECTIONS ON COMET 67P/CHURYUMOV–GERASIMENKO , 2015, 1604.00876.

[8]  M. Horányi,et al.  Negatively charged nano-grains at 67P/Churyumov-Gerasimenko , 2015 .

[9]  S. Debei,et al.  Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta , 2015 .

[10]  E. Palomba,et al.  GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko , 2015 .

[11]  Y. Langevin,et al.  Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko , 2015 .

[12]  M. Bentley,et al.  Cometary dust at the nanometre scale - the MIDAS view after perihelion , 2015 .

[13]  F. Scholten,et al.  The landing(s) of Philae and inferences about comet surface mechanical properties , 2015, Science.

[14]  M. Banaszkiewicz,et al.  Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[15]  E. Grün,et al.  DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO , 2015 .

[16]  Harry Lehto,et al.  Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years , 2015, Nature.

[17]  S. Debei,et al.  Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun , 2015, Science.

[18]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[19]  A. Zakharov,et al.  Dusty plasma at the surface of the moon , 2013 .

[20]  K. Wada,et al.  Static compression of porous dust aggregates , 2013, 1303.3351.

[21]  J. Lasue,et al.  Polarimetric observations of comet 67P/Churyumov-Gerasimenko during its 2008–2009 apparition , 2010 .

[22]  Hidekazu Tanaka,et al.  NUMERICAL MODELING OF THE COAGULATION AND POROSITY EVOLUTION OF DUST AGGREGATES , 2009, 0911.0239.

[23]  Koji Wada,et al.  Numerical Simulation of Density Evolution of Dust Aggregates in Protoplanetary Disks. I. Head-on Collisions , 2008 .

[24]  Yue Shen,et al.  Modeling Porous Dust Grains with Ballistic Aggregates. I. Geometry and Optical Properties , 2008, 0801.1996.

[25]  A. Basilevsky,et al.  Craters, smooth terrains, flows, and layering on the comet nuclei , 2007 .

[26]  Peter H. Schultz,et al.  The shape, topography, and geology of Tempel 1 from Deep Impact observations , 2007 .

[27]  E. Zubko,et al.  Discrete dipole approximation simulations of scattering by particles with hierarchical structure. , 2005, Applied optics.

[28]  Patrick Pinet,et al.  Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering , 2005 .

[29]  Ludmilla Kolokolova,et al.  Physical properties of cometary dust from light scattering and thermal emission , 2004 .

[30]  P. Helfenstein,et al.  The Opposition Effect and the Quasi-fractal Structure of Regolith: I. Theory , 2001 .

[31]  K. Jockers,et al.  Light Scattering by Aggregates with Sizes Comparable to the Wavelength: An Application to Cometary Dust , 2000 .

[32]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[33]  L. Sander Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .

[34]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[35]  J. Blum,et al.  Optical properties of dust aggregates. II: Angular dependence of scattered light , 1993 .

[36]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[37]  J. Blum,et al.  Optical properties of dust aggregates : I. Wavelength dependence , 1992 .

[38]  R. West,et al.  Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. , 1991, Applied optics.

[39]  Takashi Kozasa,et al.  Optical Properties of Dust Aggregates , 1991 .

[40]  Yu. A. Gur'yan,et al.  Dust in comet P/Halley from Vega observations , 1988 .

[41]  M. Horányi,et al.  The effects of electrostatic charging on the dust distribution at Halley's Comet , 1986 .

[42]  A. A. Galeev,et al.  Vega spacecraft encounters with comet Halley , 1986 .

[43]  D. H. Clark,et al.  Dust density and mass distribution near comet Halley from Giotto observations , 1986 .

[44]  Cesare Barbieri,et al.  First Halley Multicolour Camera imaging results from Giotto , 1986 .

[45]  F. R. Krueger,et al.  Composition of comet Halley dust particles from Giotto observations , 1986 .

[46]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[47]  W. Ip,et al.  Comet-solar wind interactions: A dusty point of view , 1984 .

[48]  D. Mendis,et al.  Dust emission from comets at large heliocentric distances , 1981 .