Effect of oxygen flow ratio on the performance of RF magnetron sputtered Sn-doped Ga2O3 films and ultraviolet photodetector

[1]  P. Kulriya,et al.  Sapphire substrate induced effects on β-Ga2O3 thin films , 2022, Journal of Materials Science: Materials in Electronics.

[2]  Hong Wang,et al.  Sol–gel preparation of Sn doped gallium oxide films for application in solar-blind ultraviolet photodetectors , 2022, Journal of Materials Science.

[3]  Jingjing Zhao,et al.  Recrystallization behavior, oxygen vacancy and photoluminescence performance of sputter-deposited Ga2O3 films via high-vacuum in situ annealing , 2021 .

[4]  Byung-Teak Lee,et al.  Optical and structural characterization of high crystalline β-Ga2O3 films prepared using an RF magnetron sputtering , 2021, Journal of Alloys and Compounds.

[5]  Baoshun Zhang,et al.  High-performance β-Ga2O3 solar-blind ultraviolet photodetectors epitaxially grown on (110) TiO2 substrates by metalorganic chemical vapor deposition , 2021 .

[6]  Haijun Lin,et al.  Structural, optical and morphological evolution of Ga2O3/Al2O3 (0001) films grown at various temperatures by pulsed laser deposition , 2021 .

[7]  W. He,et al.  Origin of the Band Gap Reduction of In-Doped β-Ga2O3 , 2021, Journal of Electronic Materials.

[8]  A. I. Popov,et al.  Ab-Initio Calculations of Oxygen Vacancy in Ga2O3 Crystals , 2021, Latvian Journal of Physics and Technical Sciences.

[9]  Y. Hao,et al.  Atomically control of surface morphology in Ga2O3 epi-layers with high doping activation ratio , 2021 .

[10]  Jaekyun Kim,et al.  Improved Performance and Operational Stability of Solution-Processed InGaSnO (IGTO) Thin Film Transistors by the Formation of Sn–O Complexes , 2021 .

[11]  In Gyu Lee,et al.  Impact of Al doping on a hydrothermally synthesized β-Ga2O3 nanostructure for photocatalysis applications , 2021, RSC advances.

[12]  In Gyu Lee,et al.  Electrical and photocurrent properties of a polycrystalline Sn-doped β-Ga2O3 thin film , 2021 .

[13]  M. Ho,et al.  VLS growth of pure and Au decorated β-Ga2O3 nanowires for room temperature CO gas sensor and resistive memory applications , 2020 .

[14]  J. Speck,et al.  Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy , 2020 .

[15]  Bayron L. Murillo-Borjas,et al.  Nanocrystalline and Polycrystalline β-Ga2O3 Thin Films for Deep Ultraviolet Detectors , 2020 .

[16]  Yan-feng Wei,et al.  A solar-blind photodetector based on β-Ga2O3 film deposited on MgO (100) substrates by RF magnetron sputtering , 2020 .

[17]  Ching-Ting Lee,et al.  Ga2O3-based solar-blind deep ultraviolet light-emitting diodes , 2020 .

[18]  H. Swart,et al.  Effects of deposition environment and temperature on photoluminescence, particle morphology, and crystal structure of pulsed laser deposited Ga2O3 thin films , 2020 .

[19]  A. Tiwari,et al.  Effect of thickness on the performance of solar blind photodetectors fabricated using PLD grown β-Ga2O3 thin films , 2020 .

[20]  Yan Cui,et al.  Growth and characterization of Sn-doped β-Ga2O3 thin films by chemical vapor deposition using solid powder precursors toward solar-blind ultraviolet photodetection , 2020 .

[21]  M. Yadav,et al.  Extremely low dark current and detection range extension of Ga2O3 UV photodetector using Sn alloyed nanostructures , 2020, Nanotechnology.

[22]  Linpeng Dong,et al.  The further investigation of N-doped β-Ga2O3 thin films with native defects for Schottky-barrier diode , 2020 .

[23]  F. Ren,et al.  Diffusion of implanted Ge and Sn in β-Ga2O3 , 2019, Journal of Vacuum Science & Technology B.

[24]  A. Polity,et al.  Optimizing the Stoichiometry of Ga2O3 Grown by RF‐Magnetron Sputter Deposition by Correlating Optical Properties and Growth Parameters , 2019, physica status solidi (a).

[25]  F. Ren,et al.  The role of annealing ambient on diffusion of implanted Si in β-Ga2O3 , 2019, AIP Advances.

[26]  J. Xu,et al.  Gallium oxide solar-blind ultraviolet photodetectors: a review , 2019, Journal of Materials Chemistry C.

[27]  Z. Wu,et al.  Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency , 2019, Applied Physics Letters.

[28]  Hongliang Lu,et al.  The Structural and Photoelectrical Properties of Gallium Oxide Thin Film Grown by Radio Frequency Magnetron Sputtering , 2019, ECS Journal of Solid State Science and Technology.

[29]  A. Lamperti,et al.  Si and Sn doping of ε-Ga2O3 layers , 2019, APL Materials.

[30]  K. Sundaram,et al.  Review—RF Sputtered Films of Ga2O3 , 2019, ECS Journal of Solid State Science and Technology.

[31]  David-Wei Zhang,et al.  Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition , 2019, Current Applied Physics.

[32]  A. Kapoor,et al.  Point defects induced work function modulation of β-Ga2O3 , 2019, Applied Surface Science.

[33]  Akito Kuramata,et al.  Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties , 2018, Thin Solid Films.

[34]  D. Wuu,et al.  Growth and characterization of co-sputtered aluminum-gallium oxide thin films on sapphire substrates , 2018, Journal of Alloys and Compounds.

[35]  M. T. Rizi,et al.  Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer , 2018 .

[36]  Z. Mei,et al.  Room‐Temperature Fabricated Amorphous Ga2O3 High‐Response‐Speed Solar‐Blind Photodetector on Rigid and Flexible Substrates , 2017 .

[37]  R. Droopad,et al.  Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors , 2017 .

[38]  De-shuang Zhang,et al.  Synthesis of monoclinic structure gallium oxide film on sapphire substrate by magnetron sputtering , 2017 .

[39]  Weihua Tang,et al.  Growth and Characterization of Sn Doped β-Ga2O3 Thin Films and Enhanced Performance in a Solar-Blind Photodetector , 2017, Journal of Electronic Materials.

[40]  Weihua Tang,et al.  Impurity Compensation Effect Induced by Tin Valence Change in α-Ga1.4Sn0.6O3 Thin Films. , 2017, ACS applied materials & interfaces.

[41]  Linpeng Dong,et al.  Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3 , 2017, Scientific Reports.

[42]  Lauren M. Garten,et al.  Structure property relationships in gallium oxide thin films grown by pulsed laser deposition , 2016 .

[43]  Linpeng Dong,et al.  Effects of post-annealing temperature and oxygen concentration during sputtering on the structural and optical properties of β-Ga2O3 films , 2016 .

[44]  T. Unold,et al.  Oxygen deficiency and Sn doping of amorphous Ga2O3 , 2016 .

[45]  H. Akazawa Formation of various phases of gallium oxide films depending on substrate planes and deposition gases , 2016 .

[46]  Andreas Fiedler,et al.  Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy , 2016, Journal of Materials Science.

[47]  Z. Li,et al.  Transparent conducting tin-doped Ga2O3 films deposited on MgAl2O4 (100) substrates by MOCVD , 2015 .

[48]  Z. Li,et al.  Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD , 2015, Journal of Materials Science.

[49]  Chih-Chao Yang,et al.  Preparation of amorphous Ga–Sn–Zn–O semiconductor thin films by RF-sputtering method , 2014 .

[50]  Jiecai Han,et al.  Effect of thickness on the microstructure, surface morphology and optical properties of N-incorporated β-Ga2O3 films , 2014 .

[51]  F. Zhuge,et al.  Structural, chemical, optical, and electrical evolution of SnO(x) films deposited by reactive rf magnetron sputtering. , 2012, ACS applied materials & interfaces.

[52]  E. Simoen,et al.  XRD Investigation of the Crystalline Quality of Sn Doped β-Ga2O3 Films Deposited by the RF Magnetron Sputtering Method , 2012 .

[53]  Wen-Tai Lin,et al.  Tunable growth of (GaxIn1−x)2O3 nanowires by water vapor , 2012 .

[54]  R. Horng,et al.  Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition , 2012 .

[55]  M. Furuta,et al.  Successful Growth of Conductive Highly Crystalline Sn-Doped α-Ga2O3 Thin Films by Fine-Channel Mist Chemical Vapor Deposition , 2012 .

[56]  M. Jayaraj,et al.  Influence of Oxygen to Argon Ratio on the Properties of RF Magnetron Sputtered Ba0.7Sr0.3TiO3 Thin Films , 2011 .

[57]  X. W. Sun,et al.  UV and Visible Electroluminescence From a $ \hbox{Sn:Ga}_{2}\hbox{O}_{3}/\hbox{n}^{+}\hbox{-Si}$ Heterojunction by Metal–Organic Chemical Vapor Deposition , 2011, IEEE Transactions on Electron Devices.

[58]  Joel B. Varley,et al.  Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .

[59]  R. Boswell,et al.  Gas phase optical emission spectroscopy during remote plasma chemical vapour deposition of GaN and relation to the growth dynamics , 2010 .

[60]  J. Reader,et al.  Spectral Data for Gallium: Ga I through Ga XXXI , 2007 .

[61]  S. Ray,et al.  The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive rf-magnetron sputtering , 2007 .

[62]  Tae Il Lee,et al.  Investigation of the transition between glow and streamer discharges in atmospheric air , 2006 .

[63]  Hideo Hosono,et al.  Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor , 2006 .

[64]  H. Ohta,et al.  Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures , 2002 .

[65]  Kalpathy B. Sundaram,et al.  Characterization and optimization of zinc oxide films by r.f. magnetron sputtering , 1997 .

[66]  W. S. Hobson,et al.  Ga2O3 films for electronic and optoelectronic applications , 1995 .

[67]  M. Graham,et al.  Sputter reduction of oxides by ion bombardment during Auger depth profile analysis , 1990 .

[68]  Göran Norlén,et al.  Wavelengths and Energy Levels of Ar I and Ar II based on New Interferometric Measurements in the Region 3 400-9 800 Å , 1973 .

[69]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[70]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .