Global curvature analysis and segmentation of volumetric data sets using trivariate B-spline functions

This paper presents a scheme to globally compute, bound, and analyze the Gaussian and mean curvatures of an entire volumetric data set, using a trivariate B-spline volumetric representation. The proposed scheme is not only precise and insensitive to aliasing, but also provides a method to globally segment the images into volumetric regions that contain convex or concave {elliptic) iso-surfaces, planar or cylindrical (parabolic) iso-surfaces, and volumetric regions with saddle-like (hyperbolic) iso-surfaces, regardless of the value of the iso-surface level. This scheme, which derives a new differential scalar field for a given scalar field, could easily be adapted to other differential properties.

[1]  Alexis Gourdon,et al.  Computing the Differential Characteristics of Isointensity Surfaces , 1995, Comput. Vis. Image Underst..

[2]  Arie Kaufman,et al.  Volume Visualization (Tutorial) , 1991 .

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[5]  James Demmel,et al.  Matrix Computations; Second Edition (Gene Golub and Charles F. Van Loan) , 1990, SIAM Rev..

[6]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[7]  Mie Sato,et al.  3D digital cleansing using segmentation rays , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[8]  A. Booth Numerical Methods , 1957, Nature.

[9]  Victoria Interrante,et al.  Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution , 1997, SIGGRAPH.

[10]  J. Thirion,et al.  The 3D marching lines algorithm and its application to crest lines extraction , 1992 .

[11]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[12]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[13]  Francis Schmitt,et al.  Intrinsic Surface Properties from Surface Triangulation , 1992, ECCV.

[14]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[15]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Robert M. Corless,et al.  Essential Maple: An Introduction for Scientific Programmers , 1995 .

[17]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[18]  Eduard Grller,et al.  Curvature-Based Transfer Functions for Direct Volume Rendering , 2000 .

[19]  C. Loan The ubiquitous Kronecker product , 2000 .

[20]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[21]  藤代 一成,et al.  Line Integral Convolutionを用いた水溶性色えんぴつ画の作成 , 1996 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Holger Theisel,et al.  Curvature Measures of 3D Vector Fields and their Applications , 2002, WSCG.

[24]  Bernd Hamann Visualization and modeling contours of trivariate functions , 1991 .