On the spectral vanishing viscosity method for periodic fractional conservation laws

We introduce and analyze a spectral vanishing viscosity approximation of periodic fractional conservation laws. The fractional part of these equations can be a fractional Laplacian or other non-local operators that are generators of pure jump L\'{e}vy processes. To accommodate for shock solutions, we first extend to the periodic setting the Kru\v{z}kov-Alibaud entropy formulation and prove well-posedness. Then we introduce the numerical method, which is a non-linear Fourier Galerkin method with an additional spectral viscosity term. This type of approximation was first introduced by Tadmor for pure conservation laws. We prove that this {\em non-monotone} method converges to the entropy solution of the problem, that it retains the spectral accuracy of the Fourier method, and that it diagonalizes the fractional term reducing dramatically the computational cost induced by this term. We also derive a robust $L^1$-error estimate, and provide numerical experiments for the fractional Burgers' equation.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  K. Karlsen,et al.  Stability of Entropy Solutions for Levy Mixed Hyperbolic-Parabolic Equations , 2009, 0902.0538.

[3]  L. Evans,et al.  Partial Differential Equations , 1941 .

[4]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[5]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[6]  Gui-Qiang G. Chen,et al.  Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .

[7]  Nathael Alibaud Entropy formulation for fractal conservation laws , 2007 .

[8]  Jose Luis Menaldi,et al.  Second Order Elliptic Integro-Differential Problems , 2002 .

[9]  N. N. Kuznetsov Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .

[10]  E. Jakobsen,et al.  The discontinuous Galerkin method for fractal conservation laws , 2009, 0906.1092.

[11]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[12]  W. Woyczynski,et al.  Fractal Burgers Equations , 1998 .

[13]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[14]  E. Jakobsen,et al.  Entropy solution theory for fractional degenerate convection–diffusion equations , 2010, 1005.4938.

[15]  Paul Loya Dirichlet and Fresnel Integrals via Iterated Integration , 2005 .

[16]  M. Czubak,et al.  Regularity of solutions for the critical N-dimensional Burgers' equation , 2008, 0810.3055.

[17]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[18]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[19]  W. Woyczynski Lévy Processes in the Physical Sciences , 2001 .

[20]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[21]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[22]  S Schochetf THE RATE OF CONVERGENCE OF SPECTRAL-VISCOSITY METHODS FOR PERIODIC SCALAR CONSERVATION LAWS , .

[23]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[24]  José Carrillo Menéndez Entropy solutions for nonlinear degenerate problems , 1999 .

[25]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[26]  J. Vovelle,et al.  OCCURRENCE AND NON-APPEARANCE OF SHOCKS IN FRACTAL BURGERS EQUATIONS , 2007 .

[27]  S. Cifani On nonlinear fractional convection - diffusion equations , 2011 .

[28]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[29]  P. Clavin Instabilities and Nonlinear Patterns of Overdriven Detonations in Gases , 2002 .

[30]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[31]  F. B. Differential and Integral Calculus , 1937, Nature.

[32]  J. Droniou,et al.  Fractal First-Order Partial Differential Equations , 2006 .

[33]  Dong Li,et al.  Finite time singularities and global well-posedness for fractal Burgers equations , 2009 .

[34]  E. Tadmor Total-variation and error estimates for spectral viscosity approximations , 1993 .

[35]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[36]  R. Shterenberg,et al.  Blow up and regularity for fractal Burgers equation , 2008, 0804.3549.

[37]  Andreas Dedner,et al.  Numerical approximation of entropy solutions for hyperbolic integro-differential equations , 2004, Numerische Mathematik.

[38]  Jérôme Droniou,et al.  A numerical method for fractal conservation laws , 2010, Math. Comput..

[39]  T. Gallouët,et al.  Global solution and smoothing effect for a non-local regularization of a hyperbolic equation , 2003 .

[40]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[41]  David Applebaum,et al.  Lévy Processes and Stochastic Calculus by David Applebaum , 2009 .

[42]  M. Czubak,et al.  Eventual regularization of the slightly supercritical fractional Burgers equation , 2009, 0911.5148.