A 0.5 V 1.1 MS/sec 6.3 fJ/Conversion-Step SAR-ADC With Tri-Level Comparator in 40 nm CMOS

This paper presents an extremely low-voltage operation and power efficient successive-approximation-register (SAR) analog-to-digital converter (ADC). Tri-level comparator is proposed to relax the speed requirement of the comparator and decrease the resolution of internal Digital-to-Analog Converter (DAC) by 1-bit. The internal charge redistribution DAC employs unit capacitance of 0.5 fF and ADC operates at nearly thermal noise limitation. To deal with the problem of capacitor mismatch, reconfigurable capacitor array and calibration procedure were developed. The prototype ADC fabricated using 40 nm CMOS process achieves 46.8 dB SNDR and 58.2 dB SFDR with 1.1 MS/sec at 0.5 V power supply. The FoM is 6.3-fJ/conversion step and the chip die area is only 160 μm × 70 μm.

[1]  Hiroki Ishikuro,et al.  A 0.5V 65nm-CMOS single phase clocked bootstrapped switch with rise time accelerator , 2010, 2010 IEEE Asia Pacific Conference on Circuits and Systems.

[2]  D.K. Su,et al.  A 0.7-V 870-$\mu$ W Digital-Audio CMOS Sigma-Delta Modulator , 2009, IEEE Journal of Solid-State Circuits.

[3]  Hiroki Ishikuro,et al.  A power scalable SAR-ADC in 0.18µm-CMOS with 0.5V nano-watt operation , 2011, 2011 1st International Symposium on Access Spaces (ISAS).

[4]  L.M. Terman,et al.  A two-stage weighted capacitor network for D/A-A/D conversion , 1979, IEEE Journal of Solid-State Circuits.

[5]  N. P. van der Meijs,et al.  A 26 $\mu$ W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios , 2011, IEEE Journal of Solid-State Circuits.

[6]  Tadahiro Kuroda,et al.  A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[7]  A. Matsuzawa,et al.  A 0.05-mm2 110-μW 10-b self-calibrating successive approximation ADC core in 0.18-μm CMOS , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[8]  A. Matsuzawa,et al.  A 14-bit 100-MS/s digitally calibrated binary-weighted current-steering CMOS DAC without calibration ADC , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[9]  Naveen Verma,et al.  Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.

[10]  Fernando Medeiro,et al.  CMOS telecom data converters , 2003 .

[11]  Michael P. Flynn,et al.  A 12b 11MS/s successive approximation ADC with two comparators in 0.13μm CMOS , 2009, 2009 Symposium on VLSI Circuits.

[12]  Eric A. M. Klumperink,et al.  A 10-bit Charge-Redistribution ADC Consuming 1.9 $\mu$W at 1 MS/s , 2010, IEEE Journal of Solid-State Circuits.

[13]  Robert W. Brodersen,et al.  A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS , 2006 .

[14]  Tadahiro Kuroda,et al.  A 40nm 50S/s–8MS/s ultra low voltage SAR ADC with timing optimized asynchronous clock generator , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[15]  R.W. Brodersen,et al.  A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-$\mu{\hbox{m}}$ CMOS , 2006, IEEE Journal of Solid-State Circuits.

[16]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[17]  Andrea Baschirotto,et al.  An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[18]  D. Sealer,et al.  Precision Capacitor Ratio Measurement Technique for Integrated Circuit Capacitor Arrays , 1979, IEEE Transactions on Instrumentation and Measurement.

[19]  Yukihiro Fujimoto,et al.  A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture , 1993 .