Experimental Characterization of the Thermal Time Constants of GaN HEMTs Via Micro-Raman Thermometry

Gallium nitride (GaN) high-electron mobility transistors (HEMTs) are a key technology for realizing next generation high-power RF amplifiers and high-efficiency power converters. However, elevated channel temperatures due to self-heating often severely limit their power handling capability. Although the steady-state thermal behavior of GaN HEMTs has been studied extensively, significantly fewer studies have considered their transient thermal response. In this paper, we report a methodology for measuring the transient temperature rise and thermal time constant spectrum of GaN HEMTs via time-resolved micro-Raman thermometry with a temporal resolution of 30 ns. We measured a broad spectrum of time constants from <inline-formula> <tex-math notation="LaTeX">$\approx 130$ </tex-math></inline-formula> ns to <inline-formula> <tex-math notation="LaTeX">$\approx 3.2$ </tex-math></inline-formula> ms that contribute to the temperature rise of an ungated GaN-on-SiC HEMT due to aggressive, multidimensional heat spreading in the die and die-attach. Our findings confirm previous theoretical analysis showing that one or two thermal time constants cannot adequately describe the transient temperature rise and that the temperature reaches steady-state at <inline-formula> <tex-math notation="LaTeX">$\approx {16}L^{{2}}/\pi ^{{2}}\alpha $ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">${\alpha }$ </tex-math></inline-formula> are the thickness and thermal diffusivity of the substrate. This paper provides a practical methodology for validating transient thermal models of GaN HEMTs and for obtaining experimental values of the thermal resistances and capacitances for compact electrothermal modeling.

[1]  E. Kohn,et al.  Transient thermal characterization of AlGaN/GaN HEMTs grown on silicon , 2005, IEEE Transactions on Electron Devices.

[2]  E. A. Burgemeister,et al.  Thermal conductivity and electrical properties of 6H silicon carbide , 1979 .

[3]  W. Pribble,et al.  Thermal analysis and its application to high power GaN HEMT amplifiers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[4]  Jean-Claude Jacquet,et al.  Thermal Characterization Using Optical Methods of AlGaN/GaN HEMTs on SiC Substrate in RF Operating Conditions , 2015, IEEE Transactions on Electron Devices.

[5]  H. Blanck,et al.  Transient Thermoreflectance for Gate Temperature Assessment in Pulse Operated GaN-Based HEMTs , 2016, IEEE Electron Device Letters.

[6]  E. Wang,et al.  Theory of Thermal Time Constants in GaN High-Electron-Mobility Transistors , 2018, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[7]  E. Dallago,et al.  Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory , 1998 .

[8]  Jianfeng Xu,et al.  Transient Thermal Analysis of GaN Heterojunction Transistors (HFETs) for High-Power Applications , 2007, IEEE Microwave and Wireless Components Letters.

[9]  T. Martin,et al.  Time-dependent thermal crosstalk in multifinger AlGaN/GaN HEMTs and implications on their electrical performance , 2011 .

[10]  J.A. del Alamo,et al.  Measurement of Channel Temperature in GaN High-Electron Mobility Transistors , 2009, IEEE Transactions on Electron Devices.

[11]  J. Rayne,et al.  Elastic Constants of Indium from 1.4° to 300°K , 1961 .

[12]  Samuel Graham,et al.  Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy. , 2007, The Review of scientific instruments.

[13]  Roland B. Simon,et al.  Diamond micro-Raman thermometers for accurate gate temperature measurements , 2014 .

[14]  M. Kuball,et al.  Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy , 2002, IEEE Electron Device Letters.

[15]  Neil J Everall,et al.  Confocal Raman Microscopy: Performance, Pitfalls, and Best Practice , 2009, Applied spectroscopy.

[16]  V. Székely,et al.  A new evaluation method of thermal transient measurement results , 1997 .

[17]  T. Martin,et al.  Nanosecond Time-Resolved Raman Thermography: Probing Device and Channel Temperature in Pulsed-Operated GaN and GaAs HEMTs , 2008 .

[18]  F. Bertoluzza,et al.  Three-dimensional finite-element thermal simulation of GaN-based HEMTs , 2009, Microelectron. Reliab..

[19]  T. Beechem,et al.  Single element Raman thermometry. , 2013, The Review of scientific instruments.

[20]  C. Gaquière,et al.  Development of Time-resolved UV Micro-Raman Spectroscopy to measure temperature in AlGaN/GaN HEMTs , 2010 .

[21]  R. C. Bradt,et al.  Thermal expansion of the hexagonal (4H) polytype of SiC , 1986 .

[22]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[23]  M. Kuball,et al.  Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy , 2007, IEEE Electron Device Letters.

[24]  Yiyang Li,et al.  Phonon scattering in strained transition layers for GaN heteroepitaxy , 2014 .

[25]  E. Janzén,et al.  Heat Capacity of 4H‐SiC Determined by Differential Scanning Calorimetry , 2000 .

[26]  M. Boćkowski,et al.  Linear piezoelectricity material constants for ammonothermal gallium nitride measured by bulk acoustic waves , 2015 .

[27]  E. Wang,et al.  Transient thermal dynamics of GaN HEMTs , 2016, 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).

[28]  M. Asheghi,et al.  Low Thermal Resistances at GaN–SiC Interfaces for HEMT Technology , 2012, IEEE Electron Device Letters.

[29]  D. Sedmidubský,et al.  High temperature enthalpy and heat capacity of GaN , 2003 .

[30]  M. Kuball,et al.  Nanosecond Timescale Thermal Dynamics of AlGaN/GaN Electronic Devices , 2008, IEEE Electron Device Letters.

[31]  R. Vetury,et al.  Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features , 2013, IEEE Transactions on Electron Devices.

[32]  M. Kuball Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control , 2001 .

[33]  D. Vanderbilt,et al.  Electric field dependence of optical phonon frequencies in wurtzite GaN observed in GaN high electron mobility transistors , 2016 .

[34]  M. Grimsditch,et al.  The elastic constants of silicon carbide: A Brillouin-scattering study of 4H and 6H SiC single crystals , 1997 .

[35]  Umesh K. Mishra,et al.  Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure , 2013, IEEE Transactions on Electron Devices.

[36]  A. Shakouri,et al.  High Resolution Thermal Characterization and Simulation of Power AlGaN/GaN HEMTs Using Micro-Raman Thermography and 800 Picosecond Transient Thermoreflectance Imaging , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[37]  Jingbiao Cui,et al.  Noncontact temperature measurements of diamond by Raman scattering spectroscopy , 1998 .