Detecting Anomalies in Dynamic Networks

This chapter deals with an important analysis task over dynamic networks, namely exploring the time varying characteristics of anomalies present in such networks. In this direction, a graph mining based framework is considered that takes a sequence of network snapshots as input for analysis. It defines various categories of temporal anomalies typically encountered in such an exploration and characterizes them appropriately to enable their detection. An experimental study of this framework over benchmark graph data sets is presented here to demonstrate the evolving behavior of the anomalies detected as per the categories defined.

[1]  Michael Ley,et al.  DBLP - Some Lessons Learned , 2009, Proc. VLDB Endow..

[2]  G. Athithan,et al.  Data Mining Techniques for Outlier Detection , 2011 .

[3]  Marina Thottan,et al.  Anomaly detection in IP networks , 2003, IEEE Trans. Signal Process..

[4]  Ajith Abraham,et al.  Ensemble of One-Class Classifiers for Network Intrusion Detection System , 2008, 2008 The Fourth International Conference on Information Assurance and Security.

[5]  Blair D. Sullivan,et al.  Multi-level anomaly detection on time-varying graph data , 2014, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[6]  Manachai Toahchoodee,et al.  Using Graph Theory to Represent a Spatio-Temporal Role-Based Access Control Model , 2010, Int. J. Next Gener. Comput..

[7]  Mario Köppen,et al.  Evolutionary linkage creation between information sources in P2P networks , 2012, Evol. Intell..

[8]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[9]  Lawrence B. Holder,et al.  Discovering Structural Anomalies in Graph-Based Data , 2007 .

[10]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data , 2014, Outlier Detection for Temporal Data.

[11]  Charu C. Aggarwal,et al.  On Anomalous Hotspot Discovery in Graph Streams , 2013, 2013 IEEE 13th International Conference on Data Mining.

[12]  Ambuj K. Singh,et al.  NetSpot: Spotting Significant Anomalous Regions on Dynamic Networks , 2013, SDM.

[13]  Deepayan Chakrabarti,et al.  AutoPart: Parameter-Free Graph Partitioning and Outlier Detection , 2004, PKDD.

[14]  William Eberle,et al.  Streaming data analytics for anomalies in graphs , 2015, 2015 IEEE International Symposium on Technologies for Homeland Security (HST).

[15]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[16]  M. Narasimha Murty,et al.  Characterizing Temporal Anomalies in Evolving Networks , 2014, PAKDD.

[17]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[18]  Christos Faloutsos,et al.  oddball: Spotting Anomalies in Weighted Graphs , 2010, PAKDD.

[19]  Yingjie Zhou,et al.  Large-scale IP network behavior anomaly detection and identification using substructure-based approach and multivariate time series mining , 2012, Telecommun. Syst..

[20]  Diane J. Cook,et al.  Graph-based anomaly detection , 2003, KDD '03.

[21]  Ryan A. Rossi,et al.  Modeling dynamic behavior in large evolving graphs , 2013, WSDM.

[22]  Aditya Bagchi,et al.  Modeling Temporal Variation in Social Network: An Evolutionary Web Graph Approach , 2010, Handbook of Social Network Technologies.

[23]  Ramesh Govindan,et al.  Detection and identification of network anomalies using sketch subspaces , 2006, IMC '06.

[24]  Eli Upfal,et al.  Algorithms on evolving graphs , 2012, ITCS '12.

[25]  Dino Ienco,et al.  Do more views of a graph help? Community detection and clustering in multi-graphs , 2013, Proceedings of the 16th International Conference on Information Fusion.