A review on modeling of electro-chemo-mechanics in lithium-ion batteries

[1]  Ying Zhao,et al.  Two-level modeling of lithium-ion batteries , 2019, Journal of Power Sources.

[2]  M. Kamlah,et al.  Phase-field modeling of the particle size and average concentration dependent miscibility gap in nanoparticles of LiMn2O4, LiFePO4, and NaFePO4 during insertion , 2019, Electrochimica Acta.

[3]  D. Brandell,et al.  Electrochemical-mechanical modeling of solid polymer electrolytes: Impact of mechanical stresses on Li-ion battery performance , 2019, Electrochimica Acta.

[4]  K. Zhao,et al.  Corrosive fracture of electrodes in Li-ion batteries , 2018, Journal of the Mechanics and Physics of Solids.

[5]  Y. Chiang,et al.  Mechanical instability of electrode-electrolyte interfaces in solid-state batteries , 2018, Physical Review Materials.

[6]  K. Albe,et al.  The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles , 2018, Acta Materialia.

[7]  William E. Gent,et al.  Fluid-enhanced surface diffusion controls intraparticle phase transformations , 2018, Nature Materials.

[8]  Tanmay K. Bhandakkar,et al.  Transformation Plasticity Provides Insights into Concurrent Phase Transformation and Stress Relaxation Observed during Electrochemical Li Alloying of Sn Thin Film , 2018, The Journal of Physical Chemistry C.

[9]  Fuqian Yang,et al.  Lithiation-induced buckling of wire-based electrodes in lithium-ion batteries: A phase-field model coupled with large deformation , 2018, International Journal of Solids and Structures.

[10]  Yongjun Lu,et al.  Reaction-diffusion-stress coupling model for Li-ion batteries: The role of surface effects on electrochemical performance , 2018, Electrochimica Acta.

[11]  Alberto Salvadori,et al.  A coupled model of transport-reaction-mechanics with trapping. Part I – Small strain analysis , 2018 .

[12]  K. Zhao,et al.  Disintegration of Meatball Electrodes for LiNixMnyCozO2 Cathode Materials , 2018 .

[13]  Hong Li,et al.  Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries , 2018, npj Computational Materials.

[14]  Wenwen Xu,et al.  Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates , 2018 .

[15]  K. Peters,et al.  Multiphysics Coupling in Lithium-Ion Batteries with Reconstructed Porous Microstructures , 2018 .

[16]  Claudio V. Di Leo,et al.  Interplay of phase boundary anisotropy and electro-auto-catalytic surface reactions on the lithium intercalation dynamics in LiXFePO4 plateletlike nanoparticles , 2018, Physical Review Materials.

[17]  S. Xia,et al.  Characterization of Stress-Diffusion Coupling in Lithiated Germanium by Nanoindentation , 2018 .

[18]  Jonghyun Park,et al.  A Single Particle Model with Chemical/Mechanical Degradation Physics for Lithium Ion Battery State of Health (SOH) Estimation , 2018 .

[19]  Denis Anders,et al.  A Chemo-Mechanical Model of Diffusion in Reactive Systems , 2018, Entropy.

[20]  David E.J. Armstrong,et al.  Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries , 2018 .

[21]  Elham Sahraei,et al.  Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries , 2017 .

[22]  Ying Zhao,et al.  Lithiation across interconnected V2O5 nanoparticle networks , 2017 .

[23]  J. Shapter,et al.  Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives , 2017 .

[24]  Y. Chiang,et al.  Random Walk Analysis of the Effect of Mechanical Degradation on All-Solid-State Battery Power , 2017 .

[25]  Zhansheng Guo,et al.  Computational and Experimental Observation of Li‐Ion Concentration Distribution and Diffusion‐Induced Stress in Porous Battery Electrodes , 2017 .

[26]  W. Lu,et al.  A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction , 2017 .

[27]  Ying Zhao,et al.  Modeling of phase separation across interconnected electrode particles in lithium-ion batteries , 2017 .

[28]  Ting Zhu,et al.  Electrochemomechanical degradation of high-capacity battery electrode materials , 2017 .

[29]  Chao Zhang,et al.  Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries , 2017 .

[30]  R. Spatschek,et al.  Electrode–electrolyte interface stability in solid state electrolyte systems: influence of coating thickness under varying residual stresses , 2017 .

[31]  Huajian Gao,et al.  Deformation and Chemomechanical Degradation at Solid Electrolyte–Electrode Interfaces , 2017 .

[32]  Kaoping Song,et al.  A Study on the Matching Relationship of Polymer Molecular Weight and Reservoir Permeability in ASP Flooding for Duanxi Reservoirs in Daqing Oil Field , 2017 .

[33]  Kurt Maute,et al.  Multiscale Modeling of Non-Local Damage Evolution in Lithium-Ion Batteries , 2017 .

[34]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[35]  Bai-Xiang Xu,et al.  Variational boundary conditions based on the Nitsche method for fitted and unfitted isogeometric discretizations of the mechanically coupled Cahn-Hilliard equation , 2017, J. Comput. Phys..

[36]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[37]  M. Pharr,et al.  Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries , 2017 .

[38]  S. Banerjee,et al.  Fabrication and Electrochemical Performance of Structured Mesoscale Open Shell V2O5 Networks. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[39]  D. G. Walker,et al.  Tunable Mechanochemistry of Lithium Battery Electrodes. , 2017, ACS nano.

[40]  K. Albe,et al.  Influence of elastic strain on the thermodynamics and kinetics of lithium vacancy in bulk LiCoO 2 , 2017, 1706.01709.

[41]  D. Dunand,et al.  Modeling of Stresses and Strains during (De)Lithiation of Ni3Sn2-Coated Nickel Inverse-Opal Anodes. , 2017, ACS applied materials & interfaces.

[42]  Michael Pecht,et al.  In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review , 2017 .

[43]  W. Craig Carter,et al.  Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design , 2017, 1703.00113.

[44]  R. Raj,et al.  Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries , 2017 .

[45]  Fuqian Yang,et al.  Large deformation analysis of diffusion-induced buckling of nanowires in lithium-ion batteries , 2017 .

[46]  Sulin Zhang,et al.  Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries , 2017, npj Computational Materials.

[47]  W. Craig Carter,et al.  The Effect of Stress on Battery-Electrode Capacity , 2017 .

[48]  Hong Wu,et al.  Misfit dislocations induced by lithium-ion diffusion in a thin film anode , 2017, Journal of Solid State Electrochemistry.

[49]  Jianming Zheng,et al.  Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries , 2017, Nature Communications.

[50]  Yan Wang,et al.  Softening by electrochemical reaction-induced dislocations in lithium-ion batteries , 2017 .

[51]  V. Shenoy,et al.  Inelastic shape changes of silicon particles and stress evolution at binder/particle interface in a composite electrode during lithiation/delithiation cycling , 2016 .

[52]  Xianghui Xiao,et al.  Three-dimensional finite element study on stress generation in synchrotron X-ray tomography reconstructed nickel-manganese-cobalt based half cell , 2016 .

[53]  H. Zheng,et al.  On the fragmentation of active material secondary particles in lithium ion battery cathodes induced by charge cycling , 2016 .

[54]  Alberto Salvadori,et al.  Computational modeling of Li-ion batteries , 2016 .

[55]  Ting Zhu,et al.  The mechanics of large-volume-change transformations in high-capacity battery materials , 2016 .

[56]  Linmin Wu,et al.  Three-Dimensional Finite Element Study on Li Diffusion Induced Stress in FIB-SEM Reconstructed LiCoO2 Half Cell , 2016 .

[57]  Ying Zhao,et al.  Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles , 2016 .

[58]  H. Huang,et al.  Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries , 2016 .

[59]  Wing Kam Liu,et al.  Rate-dependent stress evolution in nanostructured Si anodes upon lithiation , 2016 .

[60]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[61]  R. McMeeking,et al.  Stress due to the intercalation of lithium in cubic-shaped particles: a parameter study , 2016 .

[62]  M. Ortiz,et al.  Effect of prestress on the stability of electrode–electrolyte interfaces during charging in lithium batteries , 2016 .

[63]  Marcel Lacroix,et al.  Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries , 2016 .

[64]  Fuqian Yang Generalized Butler-Volmer relation on a curved electrode surface under the action of stress , 2016 .

[65]  Teng Li,et al.  Failure mechanics of a wrinkling thin film anode on a substrate under cyclic charging and discharging , 2016 .

[66]  W. Curtin,et al.  Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials , 2016 .

[67]  K. Zhao,et al.  Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries , 2016 .

[68]  Hirshikesh,et al.  Effects of stress-diffusion interactions in an isotropic elastic medium in the presence of geometric discontinuities , 2016 .

[69]  K. Zhao,et al.  Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries , 2016 .

[70]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[71]  M. Wagemaker,et al.  Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO 4 , 2016 .

[72]  J. Sakamoto,et al.  In-situ, non-destructive acoustic characterization of solid state electrolyte cells , 2016 .

[73]  Bingbing Chen,et al.  Analytical model for crack propagation in spherical nano electrodes of lithium-ion batteries , 2016 .

[74]  Claudio V. Di Leo,et al.  In Situ Lithiation–Delithiation of Mechanically Robust Cu–Si Core–Shell Nanolattices in a Scanning Electron Microscope , 2016 .

[75]  Kejie Zhao,et al.  Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review , 2016 .

[76]  Taylor R. Garrick,et al.  Modeling Battery Performance Due to Intercalation Driven Volume Change in Porous Electrodes , 2016 .

[77]  L. Archer,et al.  Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions , 2016, Science Advances.

[78]  Fuqian Yang,et al.  Effect of local velocity on diffusion-induced stress in large-deformation electrodes of lithium-ion batteries , 2016 .

[79]  Marc Kamlah,et al.  Modeling crack growth during Li insertion in storage particles using a fracture phase field approach , 2016 .

[80]  Pallab Barai,et al.  Scaling Relations for Intercalation Induced Damage in Electrodes , 2016 .

[81]  A. Volinsky,et al.  Eigenstress model for electrochemistry of solid surfaces , 2016, Scientific Reports.

[82]  Ying Zhao,et al.  Phase field modeling of electrochemically induced fracture in Li‐ion battery with large deformation and phase segregation , 2016 .

[83]  Fuqian Yang,et al.  Effect of local deformation on the coupling between diffusion and stress in lithium-ion battery , 2016 .

[84]  Christian Miehe,et al.  A phase‐field model for chemo‐mechanical induced fracture in lithium‐ion battery electrode particles , 2016 .

[85]  Teng Li,et al.  Intrinsic stress mitigation via elastic softening during two-step electrochemical lithiation of amorphous silicon , 2016 .

[86]  A. Sastry,et al.  Study on microstructures of electrodes in lithium-ion batteries using variational multi-scale enrichment , 2016 .

[87]  Yan Wang,et al.  Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries , 2016 .

[88]  M. Islam,et al.  Feeling the strain: enhancing ionic transport in olivine phosphate cathodes for Li- and Na-ion batteries through strain effects , 2016 .

[89]  Paul R. Shearing,et al.  On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .

[90]  Christian Linder,et al.  On the enhancement of low‐order mixed finite element methods for the large deformation analysis of diffusion in solids , 2016 .

[91]  D. Dunand,et al.  Numerical and experimental investigation of (de)lithiation-induced strains in bicontinuous silicon-coated nickel inverse opal anodes , 2016 .

[92]  Victor E. Brunini,et al.  Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures , 2016 .

[93]  Y. Chiang,et al.  Formulation of the coupled electrochemical–mechanical boundary-value problem, with applications to transport of multiple charged species , 2016 .

[94]  D. Jung,et al.  High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries , 2015 .

[95]  Dirk Uwe Sauer,et al.  Modeling mechanical degradation in lithium ion batteries during cycling: Solid electrolyte interphase fracture , 2015 .

[96]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[97]  Bai-Xiang Xu,et al.  Isogeometric analysis of mechanically coupled Cahn–Hilliard phase segregation in hyperelastic electrodes of Li-ion batteries , 2015 .

[98]  Y. Ni,et al.  Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes , 2015 .

[99]  Ying Zhao,et al.  Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles , 2015, 1511.06240.

[100]  Hong Wu,et al.  Diffusion-induced stress and strain energy affected by dislocation mechanisms in a cylindrical nanoanode , 2015 .

[101]  Chongmin Wang,et al.  Inward lithium-ion breathing of hierarchically porous silicon anodes , 2015, Nature Communications.

[102]  D. Fang,et al.  A chemo-mechanics framework for elastic solids with surface stress , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  B. Sheldon,et al.  A continuum model of deformation, transport and irreversible changes in atomic structure in amorphous lithium–silicon electrodes , 2015 .

[104]  Huajian Gao,et al.  Employing nanoscale surface morphologies to improve interfacial adhesion between solid electrolytes and Li ion battery cathodes , 2015 .

[105]  Peter Lamp,et al.  Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. , 2015, The journal of physical chemistry letters.

[106]  Arnulf Latz,et al.  Thermodynamically Consistent Model for Space-Charge-Layer Formation in a Solid Electrolyte , 2015 .

[107]  Bingbing Chen,et al.  Interaction between dislocation mechanics on diffusion induced stress and electrochemical reaction in a spherical lithium ion battery electrode , 2015 .

[108]  A. Bower,et al.  Analytical solutions for composition and stress in spherical elastic–plastic lithium-ion electrode particles containing a propagating phase boundary , 2015 .

[109]  Hyun-Wook Lee,et al.  A reaction-controlled diffusion model for the lithiation of silicon in lithium-ion batteries , 2015 .

[110]  B. Lu,et al.  Time to delamination onset and critical size of patterned thin film electrodes of lithium ion batteries , 2015 .

[111]  Claudio V. Di Leo,et al.  Diffusion–deformation theory for amorphous silicon anodes: The role of plastic deformation on electrochemical performance , 2015 .

[112]  A. Kholkin,et al.  Electrochemical strain microscopy time spectroscopy: Model and experiment on LiMn2O4 , 2015 .

[113]  H. Nirschl,et al.  Challenges in Lithium‐Ion‐Battery Slurry Preparation and Potential of Modifying Electrode Structures by Different Mixing Processes , 2015 .

[114]  P. Wen,et al.  Cooperative surface effect and dislocation effect in lithium ion battery electrode , 2015 .

[115]  Y. Chiang,et al.  Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design. , 2015, Physical chemistry chemical physics : PCCP.

[116]  Claudio V. Di Leo,et al.  A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery , 2015 .

[117]  M. Luisier,et al.  Design and Fabrication of Microspheres with Hierarchical Internal Structure for Tuning Battery Performance , 2015, Advanced science.

[118]  S. Mao,et al.  Atomic resolution observation of conversion-type anode RuO2 during the first electrochemical lithiation , 2015, Nanotechnology.

[119]  W. Hong,et al.  A kinetic model for anisotropic reactions in amorphous solids , 2015 .

[120]  Y. S. Meng,et al.  Topological defect dynamics in operando battery nanoparticles , 2015, Science.

[121]  Chongmin Wang,et al.  Strong kinetics-stress coupling in lithiation of Si and Ge anodes , 2015 .

[122]  M. Biener,et al.  Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. , 2015, ACS nano.

[123]  Christian Miehe,et al.  Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains , 2015 .

[124]  Teng Li,et al.  Stress-modulated driving force for lithiation reaction in hollow nano-anodes , 2015 .

[125]  Yuanyuan Xie,et al.  An integrated anode stress model for commercial LixC6-LiyMn2O4 battery during the cycling operation , 2015 .

[126]  Jia Li,et al.  Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode , 2014 .

[127]  Zhigang Suo,et al.  Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries , 2014 .

[128]  Pengyu Lv,et al.  Stress fields in hollow core–shell spherical electrodes of lithium ion batteries , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[129]  Bingbing Chen,et al.  Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation , 2014 .

[130]  Marc Kamlah,et al.  Comparison of a phase-field model for intercalation induced stresses in electrode particles of lithium ion batteries for small and finite deformation theory , 2014 .

[131]  Xu Guo,et al.  A chemo-mechanical model of lithiation in silicon , 2014 .

[132]  Richard D. Braatz,et al.  Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models , 2014 .

[133]  C. Ouyang,et al.  Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study , 2014 .

[134]  Bingbing Chen,et al.  Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode , 2014 .

[135]  Christian Miehe,et al.  Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn–Hilliard‐type and standard diffusion in elastic solids , 2014 .

[136]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[137]  V. Levitas,et al.  Anisotropic compositional expansion in elastoplastic materials and corresponding chemical potential: Large-strain formulation and application to amorphous lithiated silicon , 2014 .

[138]  Huajian Gao,et al.  Microscopic model for fracture of crystalline Si nanopillars during lithiation , 2014 .

[139]  Amartya Mukhopadhyay,et al.  Deformation and stress in electrode materials for Li-ion batteries , 2014 .

[140]  Robert J. Kee,et al.  A Computational Model of the Mechanical Behavior within Reconstructed LixCoO2 Li-ion Battery Cathode Particles , 2014 .

[141]  C. Please,et al.  Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery , 2014, 1405.7924.

[142]  Steven D. Lacey,et al.  Two dimensional silicon nanowalls for lithium ion batteries , 2014 .

[143]  Xiaosong Huang,et al.  A Microstructural Resolved Model for the Stress Analysis of Lithium-Ion Batteries , 2014 .

[144]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[145]  Zhansheng Guo,et al.  Effects of Hydrostatic Stress and Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses in Cylindrical Li-Ion Batteries , 2014 .

[146]  Long Cai,et al.  Simulation and Analysis of Stress in a Li-Ion Battery with a Blended LiMn 2 O 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode , 2014 .

[147]  W. Carter,et al.  Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage , 2014, Journal of Electroceramics.

[148]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[149]  Rajlakshmi Purkayastha,et al.  A parameter study of intercalation of lithium into storage particles in a lithium-ion battery , 2013 .

[150]  W. Aquino,et al.  Changes in electrodic reaction rates due to elastic stress and stress-induced surface patterns , 2013 .

[151]  A. Bower,et al.  Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation , 2013, 1311.5844.

[152]  J. Velázquez,et al.  Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study , 2013 .

[153]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[154]  S. Han,et al.  Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials , 2013 .

[155]  Hanqing Jiang,et al.  A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries , 2013 .

[156]  Huajian Gao,et al.  Li segregation induces structure and strength changes at the amorphous Si/Cu interface. , 2013, Nano letters.

[157]  Jochen Rohrer,et al.  Insights into Degradation of Si Anodes from First-Principle Calculations , 2013 .

[158]  Daniel P. Abraham,et al.  Stress Evolution in Composite Silicon Electrodes during Lithiation/Delithiation , 2013, 1308.3873.

[159]  Alejandro A. Franco,et al.  Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges , 2013 .

[160]  Ting Zhu,et al.  Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries , 2013 .

[161]  Farzad Mashayek,et al.  Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. , 2013, ACS nano.

[162]  Yifan Gao,et al.  Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries , 2013 .

[163]  J. Bhattacharya,et al.  Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of Chemical Research.

[164]  Min Zhou,et al.  Coupled mechano-diffusional driving forces for fracture in electrode materials , 2013 .

[165]  Rüdiger Müller,et al.  Overcoming the shortcomings of the Nernst-Planck model. , 2013, Physical chemistry chemical physics : PCCP.

[166]  Zhigang Suo,et al.  Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries , 2013 .

[167]  Timo Jacob,et al.  Mathematical modeling of intercalation batteries at the cell level and beyond. , 2013, Chemical Society reviews.

[168]  Paul Steinmann,et al.  On molecular statics and surface-enhanced continuum modeling of nano-structures , 2013 .

[169]  Song-Yul Choe,et al.  Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery , 2013 .

[170]  Yifan Gao,et al.  Stress relaxation through interdiffusion in amorphous lithium alloy electrodes , 2013 .

[171]  Feng Gao,et al.  Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries , 2013 .

[172]  T. Doi,et al.  Elastically constrained phase-separation dynamics competing with the charge process in the LiFePO4/FePO4 system , 2013 .

[173]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[174]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[175]  Robert J. Kee,et al.  Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes , 2013 .

[176]  K. Rosso,et al.  Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-Ion Batteries , 2013 .

[177]  D. Fang,et al.  Tailoring diffusion-induced stresses of core-shell nanotube electrodes in lithium-ion batteries , 2013 .

[178]  Ya-pu Zhao,et al.  A diffusion and curvature dependent surface elastic model with application to stress analysis of anode in lithium ion battery , 2012 .

[179]  L. Anand A Cahn–Hilliard-type theory for species diffusion coupled with large elastic–plastic deformations , 2012 .

[180]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[181]  Z. Suo,et al.  Reactive Flow in Large-Deformation Electrodes of Lithium-Ion Batteries , 2012 .

[182]  Daining Fang,et al.  Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: The effects of surface stress , 2012 .

[183]  Z. Suo,et al.  Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures , 2012 .

[184]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[185]  Thomas A. Yersak,et al.  A Highly Reversible Nano‐Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix , 2012 .

[186]  Marc Kamlah,et al.  Phase-field modeling of stress generation in electrode particles of lithium ion batteries , 2012 .

[187]  Yifan Gao,et al.  Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes , 2012 .

[188]  Jian Yu Huang,et al.  Self-limiting lithiation in silicon nanowires. , 2012, ACS nano.

[189]  N. Ramakrishnan,et al.  Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during charge–discharge cycling , 2012 .

[190]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[191]  Y. Chiang,et al.  Nanomechanical Quantification of Elastic, Plastic, and Fracture Properties of LiCoO2 , 2012 .

[192]  J. B. Ratchford,et al.  Young's modulus of polycrystalline Li12Si7 using nanoindentation testing , 2012 .

[193]  Leilei Yin,et al.  Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT , 2012 .

[194]  E. Kaxiras,et al.  Reactive flow in silicon electrodes assisted by the insertion of lithium. , 2012, Nano letters.

[195]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[196]  W. Craig Carter,et al.  Design criteria for electrochemical shock resistant battery electrodes , 2012 .

[197]  V. Shenoy,et al.  Elastic behavior of crystalline Li–Sn phases with increasing Li concentration , 2012 .

[198]  Allan F. Bower,et al.  A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials , 2012 .

[199]  Tanmay K. Bhandakkar,et al.  Diffusion induced stresses in buckling battery electrodes , 2012 .

[200]  Klaus Hackl,et al.  The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries , 2012 .

[201]  Huajian Gao,et al.  Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands , 2012 .

[202]  Rajlakshmi Purkayastha,et al.  An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress , 2012 .

[203]  R. McMeeking,et al.  A Linearized Model for Lithium Ion Batteries and Maps for their Performance and Failure , 2012 .

[204]  Huajian Gao,et al.  Modified Stoney Equation for Patterned Thin Film Electrodes on Substrates in the Presence of Interfacial Sliding , 2012 .

[205]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[206]  O. Efimov,et al.  Polymer gel electrolytes for lithium batteries , 2012 .

[207]  J. B. Ratchford,et al.  Effects of composition-dependent modulus, finite concentration and boundary constraint on Li-ion diffusion and stresses in a bilayer Cu-coated Si nano-anode , 2012 .

[208]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[209]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[210]  K. Maute,et al.  Effects of electrode particle morphology on stress generation in silicon during lithium insertion , 2011 .

[211]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[212]  A. McBride,et al.  Geometrically Nonlinear Continuum Thermomechanics with Surface Energies Coupled to Diffusion , 2011 .

[213]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[214]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[215]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[216]  Hui Wu,et al.  Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. , 2011, Nano letters.

[217]  V. Shenoy,et al.  Location- and Orientation-Dependent Progressive Crack Propagation in Cylindrical Graphite Electrode Particles , 2011 .

[218]  Mark W. Verbrugge,et al.  Stress Mitigation during the Lithiation of Patterned Amorphous Si Islands , 2011 .

[219]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[220]  Stefan Funken,et al.  An advanced model framework for solid electrolyte intercalation batteries. , 2011, Physical chemistry chemical physics : PCCP.

[221]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[222]  Zhigang Suo,et al.  Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. , 2011, Nano letters.

[223]  Jian Yu Huang,et al.  Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry. , 2011, Physical review letters.

[224]  D. Sauer,et al.  Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation , 2011 .

[225]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[226]  R. Müller,et al.  On the origin of inhomogeneous stress and strain distributions in single-crystalline metallic nanoparticles , 2011 .

[227]  Mark W. Verbrugge,et al.  Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle , 2011 .

[228]  Yi Cui,et al.  Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect , 2011 .

[229]  P. Notten,et al.  Honeycomb‐Structured Silicon: Remarkable Morphological Changes Induced by Electrochemical (De)Lithiation , 2011, Advanced materials.

[230]  A. Bower,et al.  A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell , 2011, 1107.6020.

[231]  Xiangchun Zhang,et al.  Implementing Realistic Geometry and Measured Diffusion Coefficients into Single Particle Electrode Modeling Based on Experiments with Single LiMn2O4 Spinel Particles , 2011 .

[232]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[233]  Dl Dmitry Danilov,et al.  Modeling All-Solid-State Li-Ion Batteries , 2011 .

[234]  Xi-Qiao Feng,et al.  Surface stress effect in mechanics of nanostructured materials , 2011 .

[235]  A. Sastry,et al.  Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles due to Coupled Phase Transition and Intercalation , 2011 .

[236]  Zhigang Suo,et al.  Inelastic hosts as electrodes for high-capacity lithium-ion batteries , 2011 .

[237]  Yifan Gao,et al.  Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes , 2011 .

[238]  Y. Chiang,et al.  Modeling the competing phase transition pathways in nanoscale olivine electrodes , 2010 .

[239]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[240]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[241]  P. Guduru,et al.  In situ measurement of biaxial modulus of Si anode for Li-ion batteries , 2010, 1108.0567.

[242]  A. Bower,et al.  In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon , 2010, 1108.0372.

[243]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[244]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[245]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[246]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[247]  Yang-Tse Cheng,et al.  Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress , 2010 .

[248]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[249]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[250]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[251]  Yang-Tse Cheng,et al.  Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications , 2010 .

[252]  Kurt Maute,et al.  Stress generation in silicon particles during lithium insertion , 2010 .

[253]  Myounggu Park,et al.  Generation of Realistic Particle Structures and Simulations of Internal Stress: A Numerical/AFM Study of LiMn2O4 Particles , 2010 .

[254]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[255]  Z. Suo,et al.  Averting cracks caused by insertion reaction in lithium–ion batteries , 2010 .

[256]  Xiaosong Huang,et al.  A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery , 2010 .

[257]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[258]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[259]  Huajian Gao,et al.  A surface locking instability for atomic intercalation into a solid electrode , 2010 .

[260]  Jake Christensen,et al.  Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes , 2010 .

[261]  M. Landstorfer,et al.  A Mathematical Model for All Solid-State Lithium-Ion Batteries , 2010 .

[262]  Ralph E. White,et al.  Theoretical Analysis of Stresses in a Lithium Ion Cell , 2010 .

[263]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[264]  D. Aurbach,et al.  On the Performance of LiNi1 / 3Mn1 / 3Co1 / 3O2 Nanoparticles as a Cathode Material for Lithium-Ion Batteries , 2009 .

[265]  S. Oswald,et al.  Electrochemical kinetics and cycling performance of nano Li[Li0.23Co0.3Mn0.47]O2 cathode material for lithium ion batteries , 2009 .

[266]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[267]  Marnix Wagemaker,et al.  Effect of Surface Energies and Nanoparticle Size Distribution on Open Circuit Voltage of Li-Electrodes , 2009 .

[268]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[269]  T. Arias,et al.  Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain , 2008, 0811.2967.

[270]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[271]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[272]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[273]  R. Kirk,et al.  Observation of Giant Diffusivity Along Dislocation Cores , 2008, Science.

[274]  L. Fu,et al.  Nanostructured anode materials for Li-ion batteries , 2008 .

[275]  Ann Marie Sastry,et al.  Mesoscale Modeling of a Li-Ion Polymer Cell , 2007 .

[276]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[277]  John P. Dempsey,et al.  Design criteria for nanostructured Li-ion batteries , 2007 .

[278]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[279]  J. Newman,et al.  A mathematical model of stress generation and fracture in lithium manganese oxide , 2006 .

[280]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[281]  Bhushan Lal Karihaloo,et al.  A scaling law for properties of nano-structured materials , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[282]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[283]  Y. Ukyo,et al.  Performance of LiNiCoO2 materials for advanced lithium-ion batteries , 2005 .

[284]  Richard T. Haasch,et al.  Diagnostic examination of Generation 2 lithium-ion cells and assessment ofperformance degradation mechanisms. , 2005 .

[285]  J. P. Dempsey,et al.  Stable crack growth in nanostructured Li-batteries , 2005 .

[286]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[287]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[288]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[289]  J. Newman,et al.  The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .

[290]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[291]  B. Fultz,et al.  A transmission electron microscopy study of cycled LiCoO2 , 2003 .

[292]  Sanboh Lee,et al.  Effect of chemical stress on diffusion in a hollow cylinder , 2002 .

[293]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[294]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[295]  Khalil Amine,et al.  Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries , 2001 .

[296]  M. Rosso,et al.  Concentration measurements in lithium/polymer–electrolyte/lithium cells during cycling , 2001 .

[297]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[298]  Ralph E. White,et al.  Modeling Lithium Intercalation of a Single Spinel Particle under Potentiodynamic Control , 2000 .

[299]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[300]  Y. Chiang,et al.  Electron microscopic characterization of electrochemically cycled LiCoO2 and Li(Al, Co) O2 battery cathodes , 1999 .

[301]  Yuri Estrin,et al.  Dislocation Theory Based Constitutive Modelling: Foundations and Applications , 1998 .

[302]  J. Cahn,et al.  Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids , 1997 .

[303]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[304]  M. Verbrugge,et al.  Modeling Lithium Intercalation of Single‐Fiber Carbon Microelectrodes , 1996 .

[305]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[306]  G.Brian Stephenson,et al.  Deformation during interdiffusion , 1988 .

[307]  F. W. Smith,et al.  Constituent Diffusion in a Deformable Thermoelastic Solid , 1987 .

[308]  J. Cahn,et al.  The Interactions of Composition and Stress in Crystalline Solids. , 1984, Journal of research of the National Bureau of Standards.

[309]  P. Taylor,et al.  On the theory of diffusion in linear viscoelastic media , 1982 .

[310]  E. C. Aifantis,et al.  On the theory of stress-assisted diffusion, II , 1982 .

[311]  L. C. Jonghe,et al.  Initiation of mode I degradation in sodium-beta alumina electrolytes , 1982 .

[312]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[313]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[314]  Elias C. Aifantis,et al.  On the problem of diffusion in solids , 1980 .

[315]  John W. Cahn,et al.  Thermochemical equilibrium of multiphase solids under stress , 1978 .

[316]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[317]  R. Armstrong,et al.  The breakdown of β-alumina ceramic electrolyte , 1974 .

[318]  J. Cahn,et al.  A linear theory of thermochemical equilibrium of solids under stress , 1973 .

[319]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[320]  S. Prussin,et al.  Generation and Distribution of Dislocations by Solute Diffusion , 1961 .

[321]  R Shuttleworth,et al.  The Surface Tension of Solids , 1950 .

[322]  Huajian Gao,et al.  Pop-Up Delamination of Electrodes in Solid-State Batteries , 2018 .

[323]  Ji‐Guang Zhang,et al.  Characterization and Modeling of Lithium Dendrite Growth , 2017 .

[324]  Tanmay K. Bhandakkar,et al.  Analytical Investigation of Binder’s Role on the Diffusion Induced Stresses in Lithium Ion Battery through a Representative System of Spherical Isolated Electrode Particle Enclosed by Binder , 2017 .

[325]  Yukari Sagae,et al.  Simulation of Lithium-Ion Battery with Effect of Volume Expansion of Active Materials , 2017 .

[326]  K. Zhao,et al.  Mechanical and Structural Degradation of LiNixMnyCozO2 Cathode in Li-Ion Batteries: An Experimental Study , 2017 .

[327]  Robert G. Landers,et al.  A Single Particle Model for Lithium-Ion Batteries with Electrolyte and Stress-Enhanced Diffusion Physics , 2017 .

[328]  Volker Schmidt,et al.  Parametric stochastic 3D model for the microstructure of anodes in lithium-ion power cells , 2017 .

[329]  Yan Wang,et al.  An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries , 2017 .

[330]  A. Mukhopadhyay,et al.  Insights into the effects of multi-layered graphene as buffer/interlayer for a-Si during lithiation/delithiation , 2017 .

[331]  Kurt Maute,et al.  Numerical Modeling of Damage Evolution Phenomenon in Solid-State Lithium-Ion Batteries , 2017 .

[332]  Charles W. Monroe,et al.  New Foundations of Newman’s Theory for Solid Electrolytes: Thermodynamics and Transient Balances , 2017 .

[333]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[334]  Taylor R. Garrick,et al.  Modeling Volume Change in Dual Insertion Electrodes , 2017 .

[335]  R. McMeeking,et al.  Modeling Crack Growth during Li Extraction in Storage Particles Using a Fracture Phase Field Approach , 2016 .

[336]  Bin Wu,et al.  Mechanical-Electrochemical Modeling of Agglomerate Particles in Lithium-Ion Battery Electrodes , 2016 .

[337]  Pallab Barai,et al.  Mechano-Electrochemical Stochastics in High-Capacity Electrodes for Energy Storage , 2016 .

[338]  Simon V. Erhard,et al.  Multi-Dimensional Modeling of the Influence of Cell Design on Temperature, Displacement and Stress Inhomogeneity in Large-Format Lithium-Ion Cells , 2016 .

[339]  N. Swaminathan,et al.  Elasticity and Size Effects on the Electrochemical Response of a Graphite, Li-Ion Battery Electrode Particle , 2016 .

[340]  Martin Ebner,et al.  Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes , 2015 .

[341]  Bingbing Chen,et al.  Effect of Misfit Dislocation on Li Diffusion and Stress in a Phase Transforming Spherical Electrode , 2015 .

[342]  Xianke Lin,et al.  Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion , 2015 .

[343]  Bingbing Chen,et al.  Dislocation effect on diffusion-induced stress for lithiation in hollow spherical electrode , 2015, Journal of Solid State Electrochemistry.

[344]  M. Verbrugge,et al.  Thermodynamics, stress, and Stefan-Maxwell diffusion in solids: application to small-strain materials used in commercial lithium-ion batteries , 2015, Journal of Solid State Electrochemistry.

[345]  Venkat R. Subramanian,et al.  Effect of Porosity, Thickness and Tortuosity on Capacity Fade of Anode , 2015 .

[346]  Victor E. Brunini,et al.  A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes , 2014 .

[347]  K. Kim,et al.  Lithium Concentration Dependent Elastic Properties of Battery Electrode Materials from First Principles Calculations , 2014 .

[348]  L. Cai,et al.  Simulation and Analysis of Inhomogeneous Degradation in Large Format LiMn2O4/Carbon Cells , 2014 .

[349]  Ting Zhu,et al.  A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes , 2014 .

[350]  P. Shearing,et al.  Particle Size Polydispersity in Li-Ion Batteries , 2014 .

[351]  V. Subramanian,et al.  Lithium Intercalation in Core-Shell Materials–Theoretical Analysis , 2014 .

[352]  J. Newman,et al.  Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator , 2014 .

[353]  Y. Chiang,et al.  Effect of Electrochemical Charging on Elastoplastic Properties and Fracture Toughness of LiXCoO2 , 2014 .

[354]  Fuqian Yang A simple model for diffusion-induced dislocations during the lithiation of crystalline materials , 2014 .

[355]  Partha P. Mukherjee,et al.  Diffusion Induced Damage and Impedance Response in Lithium-Ion Battery Electrodes , 2014 .

[356]  Taylor R. Garrick,et al.  Modeling Volume Change due to Intercalation into Porous Electrodes , 2014 .

[357]  Bai-Xiang Xu,et al.  3D Isogeometric Analysis of intercalation-induced stresses in Li-ion battery electrode particles , 2014 .

[358]  V. Shenoy,et al.  Role of Plastic Deformation of Binder on Stress Evolution during Charging and Discharging in Lithium-Ion Battery Negative Electrodes , 2013 .

[359]  A. Sastry,et al.  Molecular Dynamics Simulations of SOC-Dependent Elasticity of LixMn2O4 Spinels in Li-Ion Batteries , 2013 .

[360]  R. McMeeking,et al.  A Model for Lithium Diffusion and Stress Generation in an Intercalation Storage Particle with Phase Change , 2013 .

[361]  D. Fang,et al.  Diffusion-Induced Stresses of Spherical Core-Shell Electrodes in Lithium-Ion Batteries: The Effects of the Shell and Surface/Interface Stress , 2013 .

[362]  Partha P. Mukherjee,et al.  Stochastic Analysis of Diffusion Induced Damage in Lithium-Ion Battery Electrodes , 2013 .

[363]  Thomas A. Yersak,et al.  Effect of Compressive Stress on Electrochemical Performance of Silicon Anodes , 2013 .

[364]  B. Yan,et al.  Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-ray Nano-CT Images , 2012 .

[365]  Vivek B. Shenoy,et al.  Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires , 2012 .

[366]  Hsiao-Ying Shadow Huang,et al.  Dislocation Based Stress Developments in Lithium-Ion Batteries , 2012 .

[367]  Xingcheng Xiao,et al.  Stress Contributions to Solution Thermodynamics in Li-Si Alloys , 2012 .

[368]  M. Verbrugge,et al.  Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes , 2012 .

[369]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[370]  Roland Zengerle,et al.  Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode , 2012 .

[371]  Yet-Ming Chiang,et al.  An Analytical Method to Determine Tortuosity in Rechargeable Battery Electrodes , 2012 .

[372]  B. Wei,et al.  Silicon Thin Films as Anodes for High‐Performance Lithium‐Ion Batteries with Effective Stress Relaxation , 2012 .

[373]  Huajian Gao,et al.  Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration , 2011 .

[374]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[375]  Stefan Pischinger,et al.  Quantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach , 2011 .

[376]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[377]  Parthasarathy M. Gomadam,et al.  Modeling Volume Changes in Porous Electrodes , 2006 .

[378]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[379]  G. Nazri,et al.  Lithium batteries : science and technology , 2003 .

[380]  Karen E. Thomas,et al.  Mathematical Modeling of Lithium Batteries , 2002 .

[381]  G. Botte,et al.  Modeling Lithium Intercalation in a Porous Carbon Electrode , 2001 .

[382]  M. Gurtin,et al.  Fundamental contributions to the continuum theory of evolving phase interfaces in solids : a collection of reprints of 14 seminal papers, dedicated to Morton E. Gurtin on the occasion of his sixty-fifth birthday , 1999 .

[383]  Conyers Herring,et al.  Surface Tension as a Motivation for Sintering , 1999 .

[384]  I. Belova,et al.  Thermal and diffusion-induced stresses in crystalline solids , 1995 .

[385]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[386]  E. Aifantis,et al.  On the theory of stress-assisted diffusion, I , 1982 .

[387]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[388]  James Chen-Min Li Physical chemistry of some microstructural phenomena , 1978 .

[389]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[390]  E. A. Guggenheim Mixtures : the theory of the equilibrium properties of some simple classes of mixtures solutions and alloys , 1952 .

[391]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .