The UCSC Archaeal Genome Browser: 2012 update

The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of the vertebrate UCSC Genome Browser, but also integrates archaeal and bacterial-specific tracks with a few graphic display enhancements. The browser currently contains 115 archaeal genomes, plus 31 genomes of viruses known to infect archaea. Some of the recently developed or enhanced tracks visualize data from published high-throughput RNA-sequencing studies, the NCBI Conserved Domain Database, sequences from pre-genome sequencing studies, predicted gene boundaries from three different protein gene prediction algorithms, tRNAscan-SE gene predictions with RNA secondary structures and CRISPR locus predictions. We have also developed a companion resource, the Archaeal COG Browser, to provide better search and display of arCOG gene function classifications, including their phylogenetic distribution among available archaeal genomes.

[1]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[2]  Galt P. Barber,et al.  BigWig and BigBed: enabling browsing of large distributed datasets , 2010, Bioinform..

[3]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[4]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[5]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[6]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[7]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[8]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[9]  David Haussler,et al.  Combining phylogenetic and hidden Markov models in biosequence analysis , 2003, RECOMB '03.

[10]  Patricia P Chan,et al.  Discovery of permuted and recently split transfer RNAs in Archaea , 2011, Genome Biology.

[11]  Patricia P. Chan,et al.  GtRNAdb: a database of transfer RNA genes detected in genomic sequence , 2008, Nucleic Acids Res..

[12]  E. Koonin,et al.  Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea , 2007, Biology Direct.

[13]  Steven Salzberg,et al.  OperonDB: a comprehensive database of predicted operons in microbial genomes , 2008, Nucleic Acids Res..

[14]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[15]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[16]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[17]  Katherine S. Pollard,et al.  The UCSC Archaeal Genome Browser , 2005, Nucleic Acids Res..

[18]  Katherine H. Huang,et al.  A novel method for accurate operon predictions in all sequenced prokaryotes , 2005, Nucleic acids research.

[19]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[20]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[21]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[22]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[23]  Marc A. Martí-Renom,et al.  MODBASE: a database of annotated comparative protein structure models and associated resources , 2005, Nucleic Acids Res..

[24]  Joshua M. Stuart,et al.  Transcriptional Map of Respiratory Versatility in the Hyperthermophilic Crenarchaeon Pyrobaculum aerophilum , 2008, Journal of bacteriology.

[25]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.

[26]  Patricia Siguier,et al.  ISfinder: the reference centre for bacterial insertion sequences , 2005, Nucleic Acids Res..

[27]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[28]  Nikos Kyrpides,et al.  CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats , 2007, BMC Bioinformatics.

[29]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[30]  Robert D. Finn,et al.  Rfam: Wikipedia, clans and the “decimal” release , 2010, Nucleic Acids Res..

[31]  Henri Grosjean,et al.  Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. , 2003, RNA.

[32]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[33]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[34]  Dieter Jahn,et al.  Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves , 2005, Nature.

[35]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[36]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[37]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[38]  I-Min A. Chen,et al.  The integrated microbial genomes system: an expanding comparative analysis resource , 2009, Nucleic Acids Res..

[39]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[40]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[41]  Masaru Tomita,et al.  Large-scale tRNA intron transposition in the archaeal order Thermoproteales represents a novel mechanism of intron gain. , 2010, Molecular biology and evolution.

[42]  Michael W. W. Adams,et al.  Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.

[43]  Masaru Tomita,et al.  Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea , 2009, Proceedings of the National Academy of Sciences.