Displacement structure of weighted pseudoinverses

Estimates for the rank of A"M"N^@?V-UA"M"N^@? and more general displacement of A"M"N^@? are presented, where A"M"N^@? is the weighted pseudoinverse of a matrix A. The results are applied to the close-to-Toeplitz, close-to-Vandermonde and close-to-Cauchy matrices. We extend the results due to Heinig and Hellinger in 1994.

[1]  Yimin Wei,et al.  PCR algorithm for parallel computing minimum-norm (T) least-squares (S) solution of inconsistent linear equations , 2002, Appl. Math. Comput..

[2]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[3]  Yimin Wei,et al.  Condition numbers and perturbation of the weighted Moore-Penrose inverse and weighted linear least squares problem , 2003, Appl. Math. Comput..

[4]  Victor Y. Pan,et al.  An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..

[5]  Hebing Wu,et al.  Expression for the perturbation of the weighted Moore-Penrose inverse☆ , 2000 .

[6]  G. Styan,et al.  Equalities and Inequalities for Ranks of Matrices , 1974 .

[7]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[8]  Yimin Wei,et al.  Perturbation Identities for Regularized Tikhonov Inverses and Weighted Pseudoinverses , 2000 .

[9]  Frank Hellinger,et al.  Displacement structure of pseudoinverses , 1994 .

[10]  Frank Hellinger,et al.  Displacement structure of generalized inverse matrices , 1994 .

[11]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[12]  Yimin Wei Recurrent neural networks for computing weighted Moore-Penrose inverse , 2000, Appl. Math. Comput..

[13]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[14]  Hebing Wu,et al.  Successive matrix squaring algorithm for parallel computing the weighted generalized inverse AMN+ , 2000, Appl. Math. Comput..

[15]  Michael K. Ng,et al.  Weighted Tikhonov filter matrices for ill-posed problems , 2004, Appl. Math. Comput..

[16]  Hebing Wu,et al.  The representation and approximation for the weighted Moore-Penrose inverse , 2001, Appl. Math. Comput..

[17]  Michael K. Ng,et al.  Displacement structure of group inverses , 2005, Numer. Linear Algebra Appl..

[18]  Yimin Wei,et al.  Perturbation bounds for constrained and weighted least squares problems , 2002 .