High Efficiency Organic Multilayer Photodetectors Based on Singlet Fission

We aim to enhance the efficiency of an organic multilayer photodetector employing exciton fission process. Our device consists of ultrathin pentacene-fullerene alternating layers. The quantum efficiency enhancement from singlet fission was about 35%. Article not available.

[1]  Jade P. Wang,et al.  Demonstrating effective all-optical processing in ultrafast data networks using semiconductor optical amplifiers , 2008 .

[2]  E.P. Ippen,et al.  Demonstration of 40-Gb/s Packet Routing Using All-Optical Header Processing , 2006, IEEE Photonics Technology Letters.

[3]  Fuwan Gan,et al.  Strong-Confinement Microring Resonator Photonic Circuits , 2007, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[4]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[5]  Kozlov,et al.  Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities , 1998, Science.

[6]  Continuous-Wave Electrically Pumped 1.55-$\mu$m Edge-Emitting Platelet Ridge Laser Diodes on Silicon , 2009, IEEE Photonics Technology Letters.

[7]  V. Bulović,et al.  Synthesis of J-aggregating dibenz[a,j]anthracene-based macrocycles. , 2009, Journal of the American Chemical Society.

[8]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[9]  R. Zare,et al.  Photoacoustic spectroscopy using quantum-cascade lasers. , 1999, Optics letters.

[10]  S. Forrest,et al.  Photonic integration using asymmetric twin-waveguide (ATG) technology: part II-devices , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[12]  Henry I. Smith,et al.  Interferometric-spatial-phase imaging for six-axis mask control , 2003 .

[13]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[14]  Ryan Daniel Williams,et al.  Photonic integrated circuits for optical logic applications , 2007 .

[15]  Accurate frequency alignment in fabrication of high-order microring-resonator filters. , 2008, Optics express.

[16]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  S.G. So,et al.  Advanced embedded control and data acquisition systems for laser-based quartz-enhanced photoacoustic spectroscopy , 2007, 2007 IEEE Sensors.

[19]  Henry I. Smith,et al.  Large-area patterning for photonic crystals via coherent diffraction lithography , 2004 .

[20]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.

[21]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[22]  K L Hall,et al.  100-Gbit/s bitwise logic. , 1998, Optics letters.

[23]  Aleksandra Markina-Khusid,et al.  Design and simulation for the fabrication of integrated semiconductor optical logic gates , 2005 .

[24]  H. Tsai Absorbance Modulation Optical Lithography , 2007 .

[25]  Paul M. Pellegrino,et al.  Advancement of a MEMS photoacoustic chemical sensor , 2003, SPIE Defense + Commercial Sensing.

[26]  Joseph John Rumpler,et al.  Recess integration of micro-cleaved laser diode platelets with dielectric waveguides on silicon , 2008, SPIE OPTO.

[27]  Tymon Barwicz,et al.  Accurate resonant frequency spacing of microring filters without postfabrication trimming , 2006 .

[28]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[29]  Karl Leo,et al.  Dynamics of a high-Q vertical-cavity organic laser , 2005 .

[30]  Luc Thévenaz,et al.  Application of antimonide diode lasers in photoacoustic spectroscopy. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[31]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[32]  Rajesh Menon,et al.  Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching , 2003 .

[33]  Rajesh Menon,et al.  Design of diffractive lenses that generate optical nulls without phase singularities. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  C. Fabre,et al.  Rydberg-atom masers. I. A theoretical and experimental study of super-radiant systems in the millimeter-wave domain , 1983 .

[35]  Samara L. Firebaugh,et al.  Miniaturization and integration of photoacoustic detection , 2002 .

[36]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[37]  Rajeev J Ram,et al.  Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[38]  A. Rosencwaig,et al.  Photoacoustic spectroscopy. , 1980, Annual review of biophysics and bioengineering.

[39]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.