Characterization of exoplanets from their formation - II. The planetary mass-radius relationship

The research of exoplanets has entered an era in which we characterize extrasolar planets. This has become possible with measurements of radii and luminosities. Meanwhile, radial velocity surveys discover also very low-mass planets. Uniting all this observational data into one coherent picture to better understand planet formation is an important, but difficult undertaking. Our approach is to develop a model which can make testable predictions for all these observational methods. We continue to describe how we have extended our formation model into a self-consistently coupled formation and evolution model. We show how we calculate the internal structure of the solid core and radiogenic heating. We also improve the protoplanetary disk model. Finally, we conduct population synthesis calculations. We present how the planetary mass-radius relationship of planets with primordial H/He envelopes forms and evolves in time. The basic shape of the M-R relation can be understood from the core accretion model. Low-mass planets cannot bind massive envelopes, while super-critical cores necessarily trigger runway gas accretion, leading to "forbidden" zones in the M-R plane. For a given mass, there is a considerable diversity of radii. We compare the synthetic M-R relation with the observed one, finding good agreement for a>0.1 AU. The synthetic radius distribution is characterized by a strong increase towards small R, and a second, lower local maximum at ~1 Jovian radius. The increase towards small radii reflects the increase of the mass function towards low M. The second local maximum is due to the fact that radii are nearly independent of mass for giant planets. A comparison of the synthetic radius distribution with Kepler data shows agreement for R>2 Earth radii, but divergence for smaller radii. We predict that in the next few years, Kepler should find the second, local maximum at ~1 Jovian radius.

[1]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[2]  P. Armitage,et al.  GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS , 2009, 0909.0004.

[3]  W. Benz,et al.  Effects of disk irradiation on planet population synthesis , 2012 .

[4]  T. Guillot On the radiative equilibrium of irradiated planetary atmospheres , 2010, 1006.4702.

[5]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[6]  Kevin Heng,et al.  THE DEPENDENCE OF BROWN DWARF RADII ON ATMOSPHERIC METALLICITY AND CLOUDS: THEORY AND COMPARISON WITH OBSERVATIONS , 2011, 1102.3922.

[7]  G. Mellema,et al.  Halting type I planet migration in non-isothermal disks , 2006, astro-ph/0608658.

[8]  S. M. Fall,et al.  The Structure and Evolution of Normal Galaxies , 1981 .

[9]  D. Stevenson Cosmochemistry and structure of the giant planets and their satellites , 1985 .

[10]  T. Guillot,et al.  SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS , 2011, 1101.0606.

[11]  S. Paardekooper,et al.  ORBITAL MIGRATION OF LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE MODELS: AVOIDING CATASTROPHIC INFALL , 2010, 1003.0925.

[12]  Frank H. Shu,et al.  Photoevaporation of Disks around Massive Stars and Application to Ultracompact H II Regions , 1994 .

[13]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[14]  S. Weidenschilling Formation of the Cores of the Outer Planets , 2005 .

[15]  S. Ida,et al.  A POPULATION OF VERY HOT SUPER-EARTHS IN MULTIPLE-PLANET SYSTEMS SHOULD BE UNCOVERED BY KEPLER , 2010, 1010.3705.

[16]  J. Truran,et al.  The supernova trigger for formation of the solar system , 1977 .

[17]  Willy Benz,et al.  Extrasolar planet population synthesis - II. Statistical comparison with observations , 2009, 0904.2542.

[18]  Y. Miguel,et al.  The diversity of planetary system architectures: contrasting theory with observations , 2011, 1106.3281.

[19]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration , 2007, 0709.1375.

[20]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[21]  Y. Alibert,et al.  Characterization of exoplanets from their formation - I. Models of combined planet formation and evolution , 2012, 1206.6103.

[22]  J. Fortney,et al.  The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.

[23]  Steven V. W. Beckwith,et al.  Circumstellar disks and the search for neighbouring planetary systems , 1996, Nature.

[24]  A. Burrows,et al.  THE DEUTERIUM-BURNING MASS LIMIT FOR BROWN DWARFS AND GIANT PLANETS , 2010, 1008.5150.

[25]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[26]  E. Feigelson,et al.  DISK EVOLUTION IN OB ASSOCIATIONS: DEEP SPITZER/IRAC OBSERVATIONS OF IC 1795 , 2011, 1103.5770.

[27]  P. Bodenheimer,et al.  FORMATION AND STRUCTURE OF LOW-DENSITY EXO-NEPTUNES , 2011, 1106.2807.

[28]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[29]  R. Nelson,et al.  Global models of planetary system formation in radiatively-inefficient protoplanetary discs , 2011, 1112.2997.

[30]  Gilles Chabrier,et al.  A new vision of giant planet interiors: Impact of double diffusive convection , 2012, 1201.4483.

[31]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[32]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[33]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[34]  Y. Alibert,et al.  Extrasolar planet population synthesis - IV. Correlations with disk metallicity, mass, and lifetime , 2012, 1201.1036.

[35]  Dynamics of Circumstellar Disks , 1998, astro-ph/9802191.

[36]  C. Baruteau,et al.  On the Corotation Torque in a Radiatively Inefficient Disk , 2007, 0709.2617.

[37]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[38]  Arnold Hanslmeier,et al.  The CoRoT space mission : early results Special feature Determining the mass loss limit for close-in exoplanets : what can we learn from transit observations ? , 2009 .

[39]  M. E. van den Ancker,et al.  Timescale of mass accretion in pre-main-sequence stars , 2009, 0911.3320.

[40]  J. Lunine,et al.  26Al decay: Heat production and a revised age for Iapetus , 2009 .

[41]  Howard Isaacson,et al.  KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES , 2011, 1112.4514.

[42]  Johns Hopkins University,et al.  Disk Accretion onto High-Mass Planets , 1999 .

[43]  Jie Li,et al.  Transiting circumbinary planets Kepler-34 b and Kepler-35 b , 2012, Nature.

[44]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[45]  E. Ford,et al.  A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS , 2011, 1103.3896.

[46]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[47]  Jack J. Lissauer,et al.  Models of Jupiter's growth incorporating thermal and hydrodynamic constraints , 2008, 0810.5186.

[48]  A. Youdin THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER , 2011, 1105.1782.

[49]  K. Kinemuchi,et al.  KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM , 2011, 1105.4647.

[50]  Lars Hernquist,et al.  MINIMUM RADII OF SUPER-EARTHS: CONSTRAINTS FROM GIANT IMPACTS , 2010, 1003.0451.

[51]  A. Crida,et al.  Migration of protoplanets in radiative discs , 2008, 0806.2990.

[52]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[53]  C. Dominik,et al.  The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer , 2010, 1012.0727.

[54]  D. Fischer,et al.  ON THE NATURE OF SMALL PLANETS AROUND THE COOLEST KEPLER STARS , 2011, 1108.5686.

[55]  D. Lin,et al.  USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS , 1993, astro-ph/9312015.

[56]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[57]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[58]  Yasunori Hori,et al.  Gas giant formation with small cores triggered by envelope pollution by icy planetesimals , 2011, 1106.2626.

[59]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[60]  U. Gorti,et al.  Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates , 2004, astro-ph/0404383.

[61]  Burkhard Militzer,et al.  Rocky core solubility in Jupiter and giant exoplanets. , 2011, Physical review letters.

[62]  Giant collisions involving young Jupiter , 2007 .

[63]  J. Bally,et al.  Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula , 1998 .

[64]  Sean M. Andrews,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.

[65]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[66]  W. Hubbard,et al.  Interior Structure of Neptune: Comparison with Uranus , 1991, Science.

[67]  Charles F. Gammie,et al.  Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous Disks , 2001, astro-ph/0101501.

[68]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[69]  Disk eccentricity and embedded planets , 2005, astro-ph/0510393.

[70]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[71]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[72]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[73]  Douglas N. C. Lin,et al.  Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration , 2008, 0802.1114.

[74]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[75]  E. Salpeter,et al.  The mass-radius relation for cold spheres of low mass , 1969 .

[76]  Masahiro Ikoma,et al.  Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity , 2000 .

[77]  D. Lin,et al.  Theory of Accretion Disks I: Angular Momentum Transport Processes , 1995 .

[78]  Jonathan P. Williams,et al.  A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi , 2007, 0708.4185.

[79]  G. Laughlin,et al.  THE EFFECT OF POPULATION-WIDE MASS-TO-RADIUS RELATIONSHIPS ON THE INTERPRETATION OF KEPLER AND HARPS SUPER-EARTH OCCURRENCE RATES , 2012 .

[80]  L. Hartmann,et al.  Viscous diffusion and photoevaporation of stellar disks , 2002, astro-ph/0209498.

[81]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[82]  Richard P. Nelson,et al.  Tidally Induced Gap Formation in Protostellar Disks: Gap Clearing and Suppression of Protoplanetary Growth , 1999 .

[83]  H. F. Astrophysics,et al.  Internal structure of massive terrestrial planets , 2005, astro-ph/0511150.

[84]  T. Guillot,et al.  Composition and fate of short-period super-Earths: The case of CoRoT-7b , 2009, 0907.3067.

[85]  A. Hofmeister,et al.  Earth's heat flux revised and linked to chemistry , 2005 .

[86]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[87]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[88]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[89]  K. Heng,et al.  On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi‐analytical temperature–pressure profiles , 2011, 1107.1390.

[90]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[91]  D. Heggie,et al.  The effects of fly‐bys on planetary systems , 2010, 1009.4196.

[92]  Howard Isaacson,et al.  KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, WARM-SPITZER PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS , 2011, 1110.0820.

[93]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[94]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[95]  Wesley A. Traub,et al.  TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER , 2011, 1109.4682.

[96]  Th. Henning,et al.  The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring , 1997 .

[97]  J. Papaloizou,et al.  Orbital eccentricity growth through disc-companion tidal interaction , 2001 .

[98]  D. Prialnik,et al.  Radiogenic heating of comets by 26Al and implications for their time of formation. , 1987, The Astrophysical journal.

[99]  Brian Mason,et al.  The carbonaceous chondrites , 1963 .

[100]  P. Bodenheimer,et al.  Formation of Jupiter using opacities based on detailed grain physics , 2010, 1005.3875.

[101]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[102]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[103]  W. Benz,et al.  Extrasolar planet population synthesis. III. Formation of planets around stars of different masses , 2011, 1101.0513.

[104]  University of Toronto,et al.  THE RUNTS OF THE LITTER: WHY PLANETS FORMED THROUGH GRAVITATIONAL INSTABILITY CAN ONLY BE FAILED BINARY STARS , 2009, 0909.2644.

[105]  Cambridge,et al.  Testing the locality of transport in self-gravitating accretion discs , 2004 .

[106]  Y. Alibert,et al.  Bulk composition of the transiting hot Neptune around GJ 436 , 2009, 0904.2979.

[107]  H. Klahr,et al.  3D-Radiation Hydro Simulations of Disk-Planet Interaction , 2005, astro-ph/0510391.

[108]  Sara Seager,et al.  LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION , 2011, 1110.6180.

[109]  The stability of accretion tori. IV: Fission and fragmentation of slender, self-gravitating annuli , 1992 .

[110]  Bertram Bitsch,et al.  Planet migration in three-dimensional radiative discs , 2009, 0908.1863.

[111]  H. Urey THE COSMIC ABUNDANCES OF POTASSIUM, URANIUM, AND THORIUM AND THE HEAT BALANCES OF THE EARTH, THE MOON, AND MARS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[112]  D. Lin,et al.  THE IMPORTANCE OF DISK STRUCTURE IN STALLING TYPE I MIGRATION , 2012, 1205.4014.

[113]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[114]  Konstantin Batygin,et al.  EVOLUTION OF OHMICALLY HEATED HOT JUPITERS , 2011, 1101.3800.

[115]  Lars Hernquist,et al.  COLLISIONAL STRIPPING AND DISRUPTION OF SUPER-EARTHS , 2009, 0907.0234.

[116]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[117]  W. Benz,et al.  The Origin of Mercury , 2007 .

[118]  Antonino Francesco Lanza,et al.  Transiting exoplanets from the CoRoT space mission - X. CoRoT-10b: a giant planet in a 13.24 day eccentric orbit , 2010, 1006.2949.

[119]  R. Rafikov,et al.  Can Giant Planets Form by Direct Gravitational Instability , 2005 .

[120]  G. Wasserburg,et al.  Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth , 1964, Science.

[121]  Y. Alibert,et al.  Migration and giant planet formation , 2004, astro-ph/0403574.

[122]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[123]  Fred C. Adams,et al.  Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .

[124]  A. Morbidelli,et al.  On the width and shape of gaps in protoplanetary disks , 2006 .

[125]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[126]  Th. Henning,et al.  Detecting Planets in Protoplanetary Disks: A Prospective Study , 2002, astro-ph/0201197.

[127]  A. Fichtner,et al.  Fundamentals of Geophysics , 1997 .

[128]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[129]  D. Stevenson Formation of the giant planets , 1982 .

[130]  Jonathan J. Fortney,et al.  THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED , 2011, 1105.0024.

[131]  C. Baruteau,et al.  A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag , 2009, 0909.4552.

[132]  Ravit Helled,et al.  INTERIOR MODELS OF URANUS AND NEPTUNE , 2010, 1010.5546.

[133]  T. Guillot,et al.  The multiple planets transiting Kepler-9 I. Inferring stellar properties and planetary compositions , 2011, 1103.6020.

[134]  P. A. R. Ade,et al.  EChO - Exoplanet Characterisation Observatory , 2010, 1112.2728.

[135]  F. Rasio,et al.  Gas Disks to Gas Giants: Simulating the Birth of Planetary Systems , 2008, Science.

[136]  R. Redmer,et al.  THERMAL EVOLUTION AND STRUCTURE MODELS OF THE TRANSITING SUPER-EARTH GJ 1214b , 2010, 1010.0277.

[137]  John P. Cox,et al.  Principles of stellar structure , 1968 .

[138]  F. Masset,et al.  The mass-period distribution of close-in exoplanets , 2011, 1101.3545.

[139]  M. R. Haas,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS , 2012, 1201.5415.

[140]  Fred C. Adams,et al.  Sling amplification and eccentric gravitational instabilities in gaseous disks , 1990 .

[141]  C. Dullemond,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. II. EXTENSION TO FAINTER SOURCES , 2010, 1007.5070.

[142]  University of Leicester,et al.  Global gravitational instabilities in discs with infall , 2010, 1012.0724.

[143]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[144]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[145]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[146]  Debra A. Fischer,et al.  The Exoplanet Orbit Database , 2010, 1012.5676.

[147]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VI. DYNAMICAL INTERACTION AND COAGULATION OF MULTIPLE ROCKY EMBRYOS AND SUPER-EARTH SYSTEMS AROUND SOLAR-TYPE STARS , 2010, 1006.2584.

[148]  Willy Benz,et al.  Extrasolar planet population synthesis I: Method, formation tracks and mass-distance distribution , 2009, 0904.2524.

[149]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[150]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.