A Novel Approach for Multi Class Fault Diagnosis in Induction Machine Based on Statistical Time Features and Random Forest Classifier

[1]  Khaled Jelassi,et al.  An Effective Neural Approach for the Automatic Location of Stator Interturn Faults in Induction Motor , 2008, IEEE Transactions on Industrial Electronics.

[2]  Teresa Orlowska-Kowalska,et al.  Neural networks application for induction motor faults diagnosis , 2003, Math. Comput. Simul..

[3]  Vilas N. Ghate,et al.  Cascade Neural-Network-Based Fault Classifier for Three-Phase Induction Motor , 2011, IEEE Transactions on Industrial Electronics.

[4]  S. V. Dudul,et al.  Induction machine fault detection using support vector machine based classifier , 2009 .

[5]  Mohamed El Hachemi Benbouzid A review of induction motors signature analysis as a medium for faults detection , 2000, IEEE Trans. Ind. Electron..

[6]  W. T. Thomson,et al.  Current signature analysis to detect induction motor faults , 2001 .

[7]  V. K. Giri,et al.  Feature selection and classification of mechanical fault of an induction motor using random forest classifier , 2016 .

[8]  Gérard-André Capolino,et al.  Advances in Diagnostic Techniques for Induction Machines , 2008, IEEE Transactions on Industrial Electronics.

[9]  B. Singh,et al.  A review of stator fault monitoring techniques of induction motors , 2005, IEEE Transactions on Energy Conversion.

[10]  Mo-Yuen Chow,et al.  Multiple Discriminant Analysis and Neural-Network-Based Monolith and Partition Fault-Detection Schemes for Broken Rotor Bar in Induction Motors , 2006, IEEE Transactions on Industrial Electronics.

[11]  Thomas G. Habetler,et al.  A survey of condition monitoring and protection methods for medium voltage induction motors , 2009, 2009 IEEE Energy Conversion Congress and Exposition.

[12]  Fiorenzo Filippetti,et al.  Recent developments of induction motor drives fault diagnosis using AI techniques , 2000, IEEE Trans. Ind. Electron..