An algorithmic analysis of the Honey-Bee game
暂无分享,去创建一个
[1] Erik D. Demaine,et al. Tetris is hard, even to approximate , 2002, Int. J. Comput. Geom. Appl..
[2] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[3] Erik D. Demaine,et al. The Complexity of Clickomania , 2001, ArXiv.
[4] Stefan Reisch,et al. Hex ist PSPACE-vollständig , 1981, Acta Informatica.
[5] David Lichtenstein,et al. GO Is Polynomial-Space Hard , 1980, JACM.
[6] Erik D. Demaine,et al. Playing Games with Algorithms: Algorithmic Combinatorial Game Theory , 2001, MFCS.
[7] Aviezri S. Fraenkel,et al. Computing a Perfect Strategy for n x n Chess Requires Time Exponential in n , 1981, J. Comb. Theory, Ser. A.
[8] Jorge Urrutia,et al. Comparability graphs and intersection graphs , 1983, Discret. Math..
[9] Shigeki Iwata,et al. The Othello game on an n*n board is PSPACE-complete , 1994, Theor. Comput. Sci..
[10] Aviezri S. Fraenkel,et al. Computing a Perfect Strategy for n*n Chess Requires Time Exponential in N , 1981, ICALP.
[11] John Michael Robson,et al. N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..
[12] Stefan Reisch,et al. Gobang ist PSPACE-vollständig , 2004, Acta Informatica.
[13] David Wolfe. Go Endgames Are PSPACE-Hard , 2002 .
[14] Christof Löding,et al. Solving the Sabotage Game Is PSPACE-Hard , 2003, MFCS.
[15] Martin Middendorf. More on the Complexity of Common Superstring and Supersequence Problems , 1994, Theor. Comput. Sci..