The mTOR Inhibitor RAD 001 Sensitizes Tumor Cells to DNA-Damaged Induced Apoptosis through Inhibition of p 21 Translation

Iwan Beuvink,1 Anne Boulay,2 Stefano Fumagalli,1,4 Frederic Zilbermann,1 Stephan Ruetz,2 Terence O’Reilly,2 Francois Natt,3 Jonathan Hall,3 Heidi A. Lane,2,* and George Thomas1,4,* 1Friedrich Miescher Institute for Biomedical Research Maulbeerstrasse 66 P.O. Box 2543 CH-4058 Basel Switzerland 2Novartis Institutes for BioMedical Research, Basel Novartis Pharma AG Klybeckstrasse 141 CH-4002 Basel Switzerland 3Novartis Institutes for BioMedical Research, Basel Novartis Pharma AG Lichtstrasse 35 CH-4002 Basel Switzerland

[1]  N. Sonenberg,et al.  Upstream and downstream of mTOR. , 2004, Genes & development.

[2]  T. Golub,et al.  mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways , 2004, Nature Medicine.

[3]  Stefano Fumagalli,et al.  S6K1−/−/S6K2−/− Mice Exhibit Perinatal Lethality and Rapamycin-Sensitive 5′-Terminal Oligopyrimidine mRNA Translation and Reveal a Mitogen-Activated Protein Kinase-Dependent S6 Kinase Pathway , 2004, Molecular and Cellular Biology.

[4]  Frank McCormick,et al.  Cancer: Survival pathways meet their end , 2004, Nature.

[5]  S. Lowe,et al.  Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy , 2004, Nature.

[6]  J. Dutcher,et al.  Mammalian target of rapamycin (mTOR) inhibitors , 2004, Current oncology reports.

[7]  W. Leung,et al.  Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells , 2004, Oncogene.

[8]  J. Mester,et al.  Rapamycin inhibits cdk4 activation, p 21WAF1/CIP1 expression and G1‐phase progression in transformed mouse fibroblasts , 2004, International journal of cancer.

[9]  H. Lane,et al.  Antitumor Efficacy of Intermittent Treatment Schedules with the Rapamycin Derivative RAD001 Correlates with Prolonged Inactivation of Ribosomal Protein S6 Kinase 1 in Peripheral Blood Mononuclear Cells , 2004, Cancer Research.

[10]  A. Jaeschke,et al.  mTOR: a mediator of intracellular homeostasis. , 2004, Current topics in microbiology and immunology.

[11]  C. Proud,et al.  Role of mTOR signalling in the control of translation initiation and elongation by nutrients. , 2004, Current Topics in Microbiology and Immunology.

[12]  John L Cleveland,et al.  Myc pathways provoking cell suicide and cancer , 2003, Oncogene.

[13]  Z. Siddik,et al.  Cisplatin: mode of cytotoxic action and molecular basis of resistance , 2003, Oncogene.

[14]  M. Pagano,et al.  Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylation , 2003, Cell.

[15]  N. Socci,et al.  Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. , 2003, Molecular cell.

[16]  G. Prendergast Signal transduction: putting translation before transcription. , 2003, Cancer cell.

[17]  Shile Huang,et al.  Targeting mTOR signaling for cancer therapy. , 2003, Current opinion in pharmacology.

[18]  Shile Huang,et al.  Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). , 2003, Molecular cell.

[19]  E. Hafen,et al.  Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. , 2003, Molecular cell.

[20]  M. Kralj,et al.  Endogenous p21WAF1/CIP1 status predicts the response of human tumor cells to wild-type p53 and p21WAF1/CIP1 overexpression , 2003, Cancer Gene Therapy.

[21]  B. Edgar,et al.  Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins , 2003, Nature Cell Biology.

[22]  Shile Huang,et al.  Rapamycins: Mechanisms of Action and Cellular Resistance , 2003, Cancer biology & therapy.

[23]  M. Eilers,et al.  Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter , 2003, Oncogene.

[24]  R. Weiss,et al.  Suppression of breast cancer growth and angiogenesis by an antisense oligodeoxynucleotide to p21(Waf1/Cip1). , 2003, Cancer letters.

[25]  C. Peschel,et al.  Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. , 2003, Blood.

[26]  Steven J. Marygold,et al.  Growth Signaling: TSC Takes Its Place , 2002, Current Biology.

[27]  K. Vousden Switching from life to death: the Miz-ing link between Myc and p53. , 2002, Cancer cell.

[28]  A. Hodges,et al.  Tuberous sclerosis complex tumor suppressor–mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent , 2002, The Journal of cell biology.

[29]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[30]  A. Gartel,et al.  The Role of the Cyclin-dependent Kinase Inhibitor p 21 in Apoptosis 1 , 2002 .

[31]  F. Luan,et al.  Rapamycin blocks tumor progression: unlinking immunosuppression from antitumor efficacy1 , 2002, Transplantation.

[32]  T. Honjo,et al.  DNA Double-Strand Breaks , 2002, The Journal of experimental medicine.

[33]  A. Jaeschke,et al.  Mammalian TOR: A Homeostatic ATP Sensor , 2001, Science.

[34]  T. Owa,et al.  Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. , 2001, Current medicinal chemistry.

[35]  Shile Huang,et al.  p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. , 2001, Cancer research.

[36]  D. Woods,et al.  Regulation of p53 function. , 2001, Experimental cell research.

[37]  K. Khanna,et al.  DNA double-strand breaks: signaling, repair and the cancer connection , 2001, Nature Genetics.

[38]  J. Bartek,et al.  Pathways governing G1/S transition and their response to DNA damage , 2001, FEBS letters.

[39]  P. Houghton,et al.  Arrest and Determine the Cellular Response to Rapamycin 1 Cooperate in Enforcing Rapamycin-induced G CIP 1 p 53 / p 21 Updated , 2001 .

[40]  T. Jorgensen,et al.  p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. , 2000, Cancer research.

[41]  G. Thomas,et al.  23 S6 Phosphorylation and Signal Transduction , 2000 .

[42]  James M. Roberts,et al.  The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D‐dependent kinases in murine fibroblasts , 1999, The EMBO journal.

[43]  T. Tsuruo,et al.  Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis , 1999, Oncogene.

[44]  W. El-Deiry The Role of p53 in Chemosensitivity , 1999 .

[45]  M. Miura,et al.  Resistance to Fas-mediated apoptosis: activation of Caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP , 1998, Oncogene.

[46]  Prem Seth,et al.  Cleavage of CDK Inhibitor p21Cip1/Waf1 by Caspases Is an Early Event during DNA Damage-induced Apoptosis* , 1998, The Journal of Biological Chemistry.

[47]  E. Ségal-Bendirdjian,et al.  Alteration in p53 pathway and defect in apoptosis contribute independently to cisplatin-resistance , 1998, Cell Death and Differentiation.

[48]  P. O'Connor,et al.  Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard , 1997, Oncogene.

[49]  J. LaBaer,et al.  New functional activities for the p21 family of CDK inhibitors. , 1997, Genes & development.

[50]  S. Schreiber,et al.  PIK-Related Kinases: DNA Repair, Recombination, and Cell Cycle Checkpoints , 1995, Science.

[51]  G. Mills,et al.  Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. , 1995, Cancer research.

[52]  James M. Roberts,et al.  lnterleukin-2-mediated elimination of the p27Kipl cyclin-dependent kinase inhibitor prevented by rapamycin , 1994, Nature.

[53]  K. Kohn,et al.  p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. , 1994, Cancer research.